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Largely drawn from “Quantum Theory at the Crossroads : Reconsideringthe1927 Solvay Conference” by 
Guido Bacciagaluppi  and Antony Valentini, but also from several books by Pais (“ Inward Bound” and 
“Subtle is the Lord”), plus other sources, we examine some of the very contemporary themes as to 
quantum measurement which were debated in the 5th Solvay meeting. In addition we also discuss some 
issues given by Roland Omnes in “Understanding Quantum Mechanics” as to the problem of classical 
and quantum properties, which is at the forefront of the Quantum Gravity issues of how to reconcile 
semi classical physics with the presumed bridge between Planckian physics (presumably quantum in 
nature) with the rest of cosmology. The issues argued in part by the Solvay meeting as to Quantum 
measurements and the competing Pilot theory, as brought up by De Broglie, and how that plays out as 
to the later Hidden Variables and the alleged determinism foundations of an embedding structure for 
Quantum physics, still are with us, and make the Solvay meeting, 1927 a stellar event, still worth 
revisiting 90 years later. 

 



I. Introduction 
 

In our review of what to expect for this paper, we will be making several analogous inquiries as to the 
history and its consequences for the development of physics. 

a. First of all      we go into how both the Matrix (Heisenberg) and (Schrodinger) wave equation 
versions of quantum mechanics both have fidelity with respect to each other, and can and do 
have historical inputs into the Heisenberg Uncertainty principle. More to the point, they in 
terms of larger physical systems, than the usually small scale  quantum domain of applicability 
both fulfill the requirements of the Correspondence principle, as of the mean both systems 
duplicate classical behavior. In the case of the Heisenberg principle, as outlined by Omnes, in 
both of his volumes [1, 2] this correspondence principle, is built directly into that formula 
structure explicitly. In the case of Schrodinger’s equation, this correspondence with Classical 
behavior is seen directly in Ehrenfest’s theorem, as seen in Bacciagaluppi  and Valentini [3], as 
well as in Gasiorowitz’s elementary QM textbook [4]. Needless to say this is elementary, but at 
times overlooked, and the consequences of this blending into the classical regime of physics, is 
outlined thoroughly in the fourth volume of Mehra and Rechenberg’s historical rendition [5]  of 
how Heisenberg built up his ‘matrix model’ 

b. The contrast with the Pilot Model of De Broglie, as given in [3] is sobering and stark. The Pilot 
model sought to use a single-particle “trajectory’ as a way to avoid the use of the probabilistic 
interpretation of Quantum mechanics, but in doing so, the particle trajectories become so 
complicated that later, as mentioned in both [6], and [7] that probabilistic interpretations of the 
hyper complex particle trajectories, become essential. In addition, the De Broglie version of the 
Pilot model used what De. Broglie called U waves, which failed, as brought up by Pauli, allegedly 
failed basic criteria of adherence to the necessary phenomenology observed with the physics of 
Inelastic scattering. 
 
De Broglie eventually dropped his initial version of Pilot theory, although it was re resurrected 
by both Bohm and Schrodinger, and the revised version, still had the defect of single particle 
trajectories, having such complexity that probability was deemed essential in their analysis and 
evaluation. 
 
In short, the Pilot theory, albeit not necessarily wrong, appears to use probability to have a 
single particle trajectory approach observed experimental conditions, which is actually the 
reverse of the quantum case. 
 

c. Finally, it is worth noting that as brought up in [8, 9] that the Pilot model has a hard time in ever 
generalizing to special relativistic  conditions, a jump done in QM within 2 years due to the 
intervention of Dirac [3, 10]  . I.e. even now, as brought up by [8,9] that physicists struggle to 
obtain via the Bohmian Pilot model, to do what Dirac did so cleanly in [10,11, 12, 13]  
 

d. It is also seen in Omnes [1, 2] that the eventually “improved” version of the Pilot model has a 
modified Hamilton-Jacobi expression, with an action S, acted on  its left hand side. Also, with the 



right hand side, having a new term often called Q, as a “quantum potential”, which is not 
necessarily going to easily go away. 
 

e. In terms of the Quasi Newtonian  expression, for the Pilot model, the left hand side is F = mass 
times acceleration, but the right hand side is negative 1 times the gradient of the  (  standard 
potential, V, plus the Quantum potential Q) 
 
This means that we do not have an averaged out Ehrenfest’s theorem [3, 4, 5] ,as in the QM 
case, but that we hope we can have (V +Q) act, effectively as a classically behaving right hand 
side of F = Mass times acceleration. 
 

f. Is that guaranteed to happen? I.e. in e? Not necessarily. In theory yes, but in practicality, not 
always. 
 
So, in terms of Oscam’s razor [14], it appears that the Pilot model runs into trouble with a neat 
correlation to the Correspondence principle.  
 
The take away here, is that if you wish to have a comparatively clean delineation between 
classical and Quantum effects, that the Pilot model has difficulties.  
 
But wait, what about the main clash in the 1927 Solvay meeting? Between Bohr and Einstein as 
to the Heisenberg Uncertainty principle? Here, Bohr and Einstein in 1927 argued initially as to 
the correctness of quantum mechanics, i.e. as seen in [3, 15]: 
 
We shall in our text develop other issues with respect to the Uncertainty principle, as related by 
[15, 16, 17, 18] and one of the most startling, is the suggestion in [18], which has extremely 
important implications, for the inter relationship between classical and quantum models, that  a 
three body system, as described in their article could imitate much if almost all of the 
phenomenology of the double slit experiment.  
 
Next, by 1930, in the failure of the 2nd Bohr-Einstein debate, in Salvoy, Einstein turned to the 
alleged incompleteness of Quantum Mechanics and came up with the startling EPR publication, 
which lead to quantum entanglement. [19]  
 
From Wikipedia [20]  
 Quote: 
 
 
The Einstein–Podolsky–Rosen paradox or EPR paradox[1] of 1935 is an influential thought 
experiment in quantum mechanics with which Albert Einstein and his colleagues Boris 
Podolsky and Nathan Rosen (EPR) claimed to demonstrate that the wave function does not 
provide a complete description of physical reality, and hence that the Copenhagen 
interpretation is unsatisfactory; resolutions of the paradox have important implications for 
the interpretation of quantum mechanics. 
 



End of quote 
g. We will in our discussion of the EPR, and then Entanglement, highlight a potential cosmological 

application area, as brought up by the author, in [21] where the author writes as of the 
reference:  

Quote 

We review Vuille's generalized Schrödinger equation with its Ricci scalar inclusion, in curved 
space–time. This has a simplified version in the pre-Planckian regime, which leads to comparing 
a resultant admissible wave function with Bohmian reformulations of quantum physics, a radial 
distance given by a modified Poisson's equation and a minimal graviton mass. Finally, we look if 
Bohmian mechanics has a role in our formulation. 

End of quote 

If the radial distance, as analyzed goes to zero, and we cannot refer then to Bohmian mechanics, 
we then may have to reduce our inquiry, especially if there is a pre Universe structure, to post 
universe starting expansion structure to be linked by some variant of entanglement, if we wish 
to connect the Pre Universe physics constants, to the present universe physics constants, like as 
an example,  .  This methodology will be brought up in the next section, h.  

h. In addition we will say more about the Pilot model, plus its limitations, and the Correspondence 
principle, and how that could influence certain issues as of quantum gravity.  

      In so many words, this plus other ideas will form the basis of our review of the sort of physics which 
make their appearance in our document, as far as Salvoy lessons. And we will refer and elaborate upon 
each of these topics in our manuscript. 

i. Quantum Geometrodynamics, as given in [22] will be given as a way to introduce the idea of the 
applications of the discussion of the nature of time, as brought up in Salvoy, [3], in particular a 
discussion of “time after quantization” as given in page 149 of [22] will be brought up in terms 
of a wave functional, and the Wheeler De Witt equation which does without an explicit time 
dependence as written up in Eq. (5.18), Page 149 of [22], which actually parallels in its own way 
what was brought up by Schrodinger, in [3] about his view of the relevance of time in quantum 
microsystems, versus a contained closed quantum state. This also will be a way to introduce the 
ideas of quantum statistics, as given both by Schrodinger, in [1,2], Einstein, in [15], and its links 
to present cosmological issues as arising in present research [22] 

j. In this, a suggestion by Dr. Robert Baker, as to a difference in time flow, as far as the early 
universe, as a counterpart to the above suggestions, but well within the idea of quantum 
measurements, and quantum dynamics will be introduced.[23] 

k. In [24] we show how these ideas are pertinent as to the idea that Quantum mechanics maybe 
embedded within a deterministic super structure, [25]  which is in itself an extension of the 
debate as to complementarity, and the use of quantum physics, as opposed to the Pilot model 
and hidden variables. Which was debated extensively in Solvay, 1927. 

l. Finally, we will conclude with a review of the document given to the author by Corda and others 
as far as Torsion [26], i.e. extensive use of the ideas of using commutators, is used, and we will 



compare their suggested use of commutator algebra with the Heisenberg, Schrodinger, and also 
Dirac derivation of commutator algebra as given in [3] and [5], as far as giving insight as to the 
applications of correspondence, as was discussed in numbing detail in [13] and [15] by Pais, who 
actually knew several of the contributors to the Solvay conference. 

In doing all this, we outline what is admittedly going to be a long paper, and in our conclusion, we will 
outline as to lessons learned from Solvay, as a conclusion as to the (a) to (l) topics brought up, with a 
closing suggestion as to what this portends for quantum gravity research issues. We also will briefly talk 
as of more recent efforts as to interpret quantum theory as a subset of a larger deterministic structure 
in our concluding remarks, with reference to [25] and its comparison with [27] . Secondly is a new HUP 
principle, as elucidated by the Author, [28] And then the inflaton field used as a measurable datum, as 
brought up by Corda, in [29] , plus the final supposition, as given by the author as that the new 
elucidated Heisenberg Uncertainty principle, may be linked to the start of the preliminary expansion of 
the Universe as given in [30]. 

m. This last supposition, as given in [30] will be actively compared to the Einstein-Bohr debates as 
given in the context of the 1927 and 1930 Solvay debate positions by Einstein and Bohr, with the 
author making some final concluding remarks on what if [30] is true, and what it pertains to, in 
the search for a robust version of Quantum gravity in the early Universe. 

II. First ,block of review, how the Correspondence principle, 

and linkage of quantum formalism to classical physics  was used to 
construct the Heisenberg Equation; and the alternate protocol used 
by Schrödinger via  Ehrenfest’s theorem, to obtain linkage to 
Classical physics for the Schrodinger Equation. 

To start this, begin looking at how the Correspondence principle was initiated as a way to simplify 
experimental connections from the laboratory with purported physical theories, and this is a take-off of 
the discussion in [3]. In [32] there is a simple Fourier mathematical bridge which is presented with 
concludes as follows: 

Quote from [32] 

To summarize, the classical limit problem has been debated since the birth of quantum theory and is still 
a subject of research. In this paper, we present a simple mathematical formulation of Bohr’s 
correspondence principle. We consider the simplest quantum system, the harmonic oscillator, and obtain 
exact classical results. We believe that this approach illustrates in a clear fashion the difference between 
Planck’s limit and Bohr’s correspondence principle. Finally, using this simple procedure we find 
corrections to the exact classical result as a series in the ratio ¯h S , which is very small for classical 
energies but not zero. It would be interesting to test whether this energy dependence could be observed 
for the case of real quantum systems approaching the microscopic-macroscopic boundary. 

End of quote from [32] 

The results referenced above, are in response to the very real struggle still going on today [33, 34], as to 
make linkage to the classical and quantum domains, of space-time and their formalistic connections. I.e. 



what we will do is to reproduce the simpler ideas brought up in the 1920s and 1930s which gives the 
physical essence of the problems debated, i.e. in the case of the Heisenberg equation derivations, we 
find that the QM commutation relations, as thought of by Heisenberg were used directly to make a 
bridge from the Matrix mechanics approach to obtain a classical equation. 

The closest to this Heisenberg idea, ironically, is mentioned in [34] which is a classical version of the 
Quantum Fock spaces, which is further amplified in [35] where the idea is to use a mean field theory 
approach, leading to: 

Quote: 

We present a semi-classical approach to many-body quantum propagation in terms of coherent 
sums over quantum amplitudes associated with the solutions of corresponding classical 
nonlinear wave equations. This approach adequately describes interference effects in the many-
body space of interacting bosonic systems.  

 
The main quantity of interest, the transition amplitude between Fock states when the dynamics 
is driven by both single-particle contributions and many-body interactions of similar magnitude, 
is non-perturbatively constructed in the spirit of Gutzwiller's derivation of the van Vleck 
propagator from the path integral representation of the time evolution operator, but lifted to the 
space of symmetrized many-body states. Effects beyond mean-field, here representing the 
classical limit of the theory, are semi-classically described by means of interfering amplitudes 
where the action and stability of the classical solutions enter. In this way, a genuinely many-
body echo phenomenon, coherent backscattering in Fock space, is presented arising due to 
coherent quantum interference between classical solutions related by time reversal. 

End of quote 

The Heisenberg approach was in a sense very different, in that one used in Matrix mechanics, 
which will be outlined, a space in the derivations, where Quantum versions of commutation 
relations are inserted directly in order to bridge to a known classical result. This is in essence a 
180 degree reversal from the program indicated above, and it is novel in its clever use of the 
imperative to use quantum commutation relations. To obtain a classical result in the mean, one 
has to use quantum mechanical reasoning. 

From [1, 2, 3] we can say that Heisenberg started off with looking at 
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This Eq.(1) especially as given in [1] was directly inserted into what Heisenberg considered as a 
“resonating quantum quantities to consider/evaluate which we write up as 

                                                  ,exp 2nm nm n mX t X i t                                                                        (2) 

By the correspondence principle, the classical analog of Eq. (2) is X(t)  

Note that Eq. (1) and Eq. (2) were thought of by Heisenberg as in the case of an atom in an electric field,. 
And this classically to QM transformation would be denoted by 
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We can then summarize that any classical quantity to QM would be linked by 
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The linkage to commutation relations is later given by, in [1] page 26 of that reference by the following 
treatment of the time derivative of Eq. (2) to read as 
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The executive summary is that judicious application of  ,P X I
i




 allows us to retrieve the classical 

equation of motion, i.e. in the Heisenberg picture of matrix mechanics, the above argument allows a 

linkage of 
 nmdX t

dt
 to 
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 , i.e. to summarize  the above argument we have  

                                                 

 
 

 

 

,

,

nm

P X I
i

dX t dX t P

dt dt m

iff P X I
i


 






                                           (6) 

A similar set of arguments, allows us if, we use for a potential we write as a Polynomial we can get 
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What we have obtained, especially in the bottom of Eq. (7) is what we will refer to in the Schrodinger 
equation picture as Ehrenfest’s Theorem, which will be showed to be correct, so in doing so, what we 
will show is that in the Schrodinger Equation picture, that we will have, then  
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So, now then we will give a proof of 3rd equation of (8) above in the Schrodinger Equation 
representation. Note that the above equations are a fairly succinct presentation in QM of the 
Correspondence principle 

So as to give reality to the last part of Eq. (8) above, we will next go to III. And prove Ehrenfest’s 
Theorem. 

III. Proving Ehrenfest Theorem, via Schrödinger Mechanics.  

We will use this section to show the proof of the following Equation. 

( ) ( ) ( )
d P dP

Schrodinger Ehrenfest Theorem V X for classical V X
dt dt

                          (9)     

Now, following [1], [2], [3], [36] and [37] we can write the Schrödinger Equation as having the following 
representation, namely if  is a wave function, and H a Hamiltonian, then by [36] we write the 
following 
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If so then, for any generalized Schrodinger equation, for an operator   we find then that the following 
holds [1],[2], [3],[36] and [37] 
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Then, largely from [4], [36] we can write if we use the Schrodinger based operator equation 
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Will then lead to the following: 
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We assert that then, via these techniques, the Correspondence principle is upheld and by Eq. (8) then 
that the Schrodinger and Heisenberg formulations of Quantum mechanics are giving equivalent 
information. 

 IV. Summing up the similarities of both II and III, in terms of the 
Correspondence Principle.  
I.e. in both situations, for both the Heisenberg and the Schrodinger equations, the commentator 
relationships as given by  

                                                                 ,P X I
i




                                                                    (14)  

Will lead to at a mean representation of force = mass times acceleration, thereby leading to in the mean 
a representation of local system quantum phenomenology being averaged out in a mean, to the 
astounding results that we then, through judicious application of Eq. (14) obtain in the mean, the 
following equations 
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 Having said this, and given the behavior of both the Schrodinger and Heisenberg pictures as far as their 
relationships to the correspondence principle, as given by Eq. (15) after application of Eq. (14), in both 
cases, we will then in section V show by example how the conceptually simple arrangement as 
summarized by Eq. (15) for both the Schrodinger and Heisenberg ideas, we will then next start 
discussion  of the Pilot model, initially of De Broglie, which was taken up later by Bohm, and describes its 
variance from both Eq. (14) and Eq. (15) 

Note that Einstein was in many ways an adherent to at least part of the Pilot model, and that partly due 
to the issue of Hidden variables, i.e. after a description of the basics of the Pilot Model, leading to its 
later formulation by Bohm, and the idea of a trajectory for a “particle” as in substitution of probability, 
quantum mechanics style, we will after we present the Pilot model go to the main part of our document 
which is in the Bohr-Einstein debates over the Uncertainty principle. 

V. The Pilot model, and its variation from the simplicity of Eq. (15) 
and its rejection of Eq. (14)                                                 

The Pilot model was initially brought up by De Broglie, and this was in response to a desire to 
bring in an alternative to complementarity As stated by [1]. i.e. see page 62. We will start with 
the version of the Pilot wave equation set by De Broglie, in Solvay [3], which was abandoned by 
De Broglie, on account of having problems with inelastic scattering. I.e. a challenge by Pauli, of 
this theory lead to its abandonment. 

 
However, Bohr, revived it on the basis of a multi particle wave function [37] and [38]  . We will 
get back to that later on after dealing with the single particle case of the Pilot model first.   I.e. 
both the single particle Pilot Wave equation and Schrodinger Equation use much the same 
differential Equation, as given by [1,2,3]. And this is for the single particle case. 
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However, instead of the usual 1 particle Schrodinger equation wave function we would  have, 
instead. Even if  
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The term, S is a solution to a modified Hamilton-Jacobi equation, as given by Eq. (19) on the 
next page 

In addition, there is in the single particle wave function case, the problem of how to interpret  the 
quantum Potential as given in Q, in  Eq. (18) below 

Notice, in the formulation of Eq. (19) below there is the oddball treatment of the time derivative 
which has among other things the hydrodynamic style  
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The main result of this set of Eq. (19) is a direct replacement of the concept of wave-Particle 
duality , and the reality of the results of the Schrodinger equation via the Born postulate, with the 
idea of a guidance equation, and of a particle trajectory. 

Key to the simplicity of Eq. (15) above, especially in the idea of Probability due to Wave Particle 
duality and the Born rule [39]  

 

By way of contrast as opposed to the Born rule {39] and probability interpretation of the wave 
function, the Pilot theory has this so called Guidance equation (single Particle trajectory!!!). I.e. 
this is the allegedly main law of Pilot theory! See the below. For point particles!!!! 

                                                   
 

2
Pilot

Pilot

S
v

m


                                                       (20) 

So what is the problem? If all the machinery of Eq. (19) is employed, one has the frankly absurd 
replacement for the force equation, i.e. no connection with classical physics, in certain cases, i.e. 
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The problem is with the quantum potential ,Q  as given in the bunch of equations, Eq.(19) 

 

The only way to recover, continuity with  Eq. (15) in the correspondence of small Quantum 
effects being averaged to Classical effects, i.e. is to have that in the mean, the quantum potential 
Q, as given in Eq. (19) would effectively dissipate.   One needs a decoherence mechanism to get 
rid of it. Interaction with the environment can provide this mechanism  [40], [41], [42], [43]    

 

So with further ado, we will briefly list what could be called a cheat sheet as far as de coherence.                                          

VI: Decoherence and the chance to remove Quantum potential Q as a factor. 
 

Here is the problem in a nut shell, i.e. De coherence requires that particles have no quantum 
interference with each other. Is this true? I.e. the Phenomenon of Quantum entanglement really 
exists, i.e. see [44].  I.e. in order to kill the term Q, in Eq. (19) in particular with respect to having no 
chance of Q being a factor in a limiting case, we would like there to be no chance of Entanglement of 
particles, or terms. 

No such luck. i.e. Quantum Entanglement is here to stay [45], So here in a nutshell is what we are 
up against, in order to insure that Quantum potential Q,. is not a factor. 

The decohered elements of the system no longer exhibit quantum interference between each other, 
as in a double-slit experiment. Any elements that decohere from each other via environmental 
interactions are said to be quantum entangled with the environment. The converse is not true: not all 
entangled states are decohered from each other 

 

Vii: Now what can we say about multi particle Pilot theory models? 
 The Guidance equation becomes, for each jth particle 
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                                                                          (22) 

As was mentioned earlier, these single particle trajectories, would be ‘non local ‘and would depend 
upon other particles. It gets worse, as mentioned earlier, [8,9] indicate that the Guidance equation for 
point particles, due to the fact the particle trajectories are ‘non local’ get so complicated, by default, 
even though the [39] Born rule is not used, the trajectories need quantum style probabilities, this in the 
complex system dynamics which are treated macroscopically by Eq. (15)  

The Schrodinger Equation would then become similar to having 
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Due to the snarled up mathematics, the multiple Pilot theory still is hard to link to Special relativity, as 
noted in [8,9] And people are still working on that special relativistic extension, but it is extremely 
mathematically difficult. 

Q, would become a bigger mess, i.e. hard to calculate, although not impossible, but the biggest problem 
would be that one would have to contend with the existence of empty waves, represented by wave 
functions propagating in space and time but not carrying energy or momentum. I.e. Einstein called 
them ghosts waves, and their existence or lack of, is one of the main impediments toward full 
acceptance of this theory, even more than the problems associated with Q, which  are more severe 
in the multi – particle case, than in the single particle case, See  [46] , [47], [48], and [49] 

 

We will end this by saying that there appears to be certain experimental configurations which may 
favor the Pilot Model, but it depends also upon the notion of hidden variables, [49]  Einstein definitely 
favored hidden variables [3], [15], and so did Bohm [50]. 

In closing, this is a mathematically complicated theory and it is not necessarily wrong. Also, Bell 
thought enough of this idea of hidden variables to include it in [51], in his Quantum unspeakables 
book 

Note though that complexity does not mean the theory is useless. I.e. note that it is being pursued 
even today, with applications.[52]  

VIII. The Heisenberg Uncertainty principle, and the Bohr- 
Einstein debates on such. Starting with 1927 5th Solvay  

A review of the Solvay 1927 Bohr – Einstein debate as given in Appendix A, will be investigated 
here, with a lead into the very unexpected development of Quantum Entanglement. 

There were several phases as far as Einstein’s attitudes toward Quantum mechanics. I.e. the most 
revealing show up  In appendix A, We also refer the reader to [53], i.e. Einstein should be viewed 
directly in the context of what was brought up in [3] where we will directly reference  the text: One of 
the big takeaways is that in 1927 that Einstein essentially stated the main points of the EPR thought 
experiment, 8 years ahead of the [19] reference in concise form, which I do not believe was entirely 
understood by Bohr at the time, [3] 

Go to page 194 and 195 of [3]. In it, we will go to the following: 

Quote: (Page 194 of [3] ) 

Einstein compares and contrasts the view of the wave function  for the case of a single electron. 
According to view I,  represents an ensemble (cloud) of electrons. According to view II,  is a 
complete description of an individual electron. 

Einstein argued that View II is incompatible with locality. We will as a side bar put in the following 
definition of locality 



In physics, the principle of locality states that an object is only directly influenced by its 
immediate surroundings. A theory which includes the principle of locality is said to be a 
"local theory" 

Now back to Einstein,  

And that to avoid this, in addition to   there should be a localized particle (along the lines of De 
Broglie’s theory) 

This was the main point of the page 194 of [3]. 

Next: 

On page 195 of [3] Einstein is quoted as saying 

If 
2  were simply regarded as the probability that at a certain point that a given particle is found at a 

given time, it could happen that the same elementary process produces an action at two or several 

places on a screen. But the interpretation according to which 
2 expresses the probability that the 

particle is found at a given point, assume an entirely peculiar mechanism of action at a distance which 
prevents the wave continuously distributed in space, from producing an action in two places on the 
screen. 

End of Einstein quote 

This is, in essence the EPR hypothesis, in [19] given 8 years earlier than is usually ascribed. Appendix A, 
from Wiki, as cited below makes it a matter of the idea of “indeterminacy”, but in reality, the idea 
brought up by Einstein was about action at a distance. 

It goes further than that. On page 195, of [3] the authors conclude, that 

Quote: 

Einstein’s wording conveys a distinction between probability for a single particle (leading to multiple 
detections) and probability for ‘this’ particle (leading to single detection only). 

End of quote 

Furthermore, we have that on page 196 of [3]  

Quote: 

Einstein’s argument is that quantum theory is either nonlocal or incomplete. 

End of quote 

Next, from page 196 of [3] 

Quote: 

For the rest of his life, Einstein believed that locality was a fundamental principle of physics so he 
adhered to the view that quantum physics must be incomplete. 



End of quote 

This in 196 of [3] is succinct and to the point. 

However, it is worth noting that on page 196 of [3]  

Quote: 

However, further reasoning by Bell (1964) showed that any completion of quantum theory would will 
require nonlocality 

End of quote 

To see this, references [ 54, 55  ]  

In addition, in a point that will be elaborated upon in the conclusions, as future works in progress, there 
is evidence that a modified three body problem(classical!) can with certain caveats give some the same 
phenomenology of the double slit experiment, i.e. see [18]. The fact is, that there are mixed quantum 
and classical systems giving much the same implied results as commented upon in Solvay [3] is in my 
mind of decisive phenomenological import. We will revisit this later, but in passing it is useful to go to 
the reaction of Bohr, in 2927 to a challenge of the Solvay 1927 argument as to the double slit 
experiment and HUP. 

We can see that the reaction of Bohr, as to this issue in 1927 , i.e. the Einstein challenge to the double 
slit interference hypothesis, i.e. as an addendum to Appendix A, Bohr, according to [20]  

Quote from [20], as a reaction to Appendix A, 

Bohr's response was to illustrate Einstein's idea more clearly using the diagram in Figure C. (Figure 
C shows a fixed screen S1 that is bolted down. Then try to imagine one that can slide up or down 
along a rod instead of a fixed bolt.) Bohr observes that extremely precise knowledge of any 
(potential) vertical motion of the screen is an essential presupposition in Einstein's argument. In fact, 
if its velocity in the direction X before the passage of the particle is not known with a precision 
substantially greater than that induced by the recoil (that is, if it were already moving vertically with 
an unknown and greater velocity than that which it derives as a consequence of the contact with the 
particle), then the determination of its motion after the passage of the particle would not give the 
information we seek. However, Bohr continues, an extremely precise determination of the velocity of 
the screen, when one applies the principle of indeterminacy, implies an inevitable imprecision of its 
position in the direction X. Before the process even begins, the screen would therefore occupy an 
indeterminate position at least to a certain extent (defined by the formalism). Now consider, for 
example, the point d in figure A, where the interference is destructive. It is obvious that any 
displacement of the first screen would make the lengths of the two paths, a–b–d and a–c–d, different 
from those indicated in the figure. If the difference between the two paths varies by half a 
wavelength, at point d there will be constructive rather than destructive interference. The ideal 
experiment must average over all the possible positions of the screen S1, and, for every position, 
there corresponds, for a certain fixed point F, a different type of interference, from the perfectly 
destructive to the perfectly constructive. The effect of this averaging is that the pattern of 
interference on the screen F will be uniformly grey. Once more, our attempt to evidence the 
corpuscular aspects in S2 has destroyed the possibility of interference in F, which depends crucially 
on the wave aspects. 

End of quote from [20] 



This response although extremely clever, does not really answer the particulars of what Einstein was 
asking , in his questioning which is given in [3] and rendered above this quoted text. 

Interested readers who wish for a summary of the 2nd argument as to the use of the Energy and time 
uncertainty principle in the 1930 Solvay conference are enjoined to read the summary as given in 
[53] 

We will next, go to the EPR thought experiment, which has been already given in its essential talking 
point, and then the emergence of quantum entanglement. 

The point we wish to state here, is that the ideas of refutation of the EPR thought experiment , as 
done by the physics community lead to the astounding Quantum entanglement phenomena, an 
active area of research which is engaging physics researchers, now. [56] 

The point which we will focus upon next is what information does Entanglement actually involve 
exchanging.  So with that, we will be going to our next section. 

IX. EPR paper, Entanglement and then the question of how 
information transfer in quantum entanglement process 
occurs:  
In [57] the discussion about the Quantum theory and EPR are cited in the following quote from [57] 
namely; 
Quote 

Initially Einstein was enthusiastic about the quantum theory. By 1935, however, his 
enthusiasm for the theory had given way to a sense of disappointment. His reservations were 
twofold. Firstly, he felt the theory had abdicated the historical task of natural science to 
provide knowledge of significant aspects of nature that are independent of observers or their 
observations. Instead the fundamental understanding of the wave function (alternatively, the 
“state function”, “state vector”, or “psi-function”) in quantum theory was that it only 
treated the outcomes of measurements (via probabilities given by the Born Rule). The theory 
was simply silent about what, if anything, was likely to be true in the absence of observation. 
That there could be laws, even probabilistic laws, for finding things if one looks, but no laws 
of any sort for how things are independently of whether one looks, marked quantum theory 
as irrealist. Secondly, the quantum theory was essentially statistical. The probabilities built 
into the state function were fundamental and, unlike the situation in classical statistical 
mechanics, they were not understood as arising from ignorance of fine details. In this sense 
the theory was indeterministic. Thus Einstein began to probe how strongly the quantum 
theory was tied to irrealism and indeterminism. 

He wondered whether it was possible, at least in principle, to ascribe certain properties to a 
quantum system in the absence of measurement. Can we suppose, for instance, that the decay 
of an atom occurs at a definite moment in time even though such a definite decay time is not 
implied by the quantum state function? That is, Einstein began to ask whether the quantum 
mechanical description of reality was complete. Since Bohr's complementarity provided 
strong support both for irrealism and indeterminism and since it played such a dominant 
role in shaping the prevailing attitude toward quantum theory, complementarity became 



Einstein's first target. In particular, Einstein had reservations about the uncontrollable 
physical effects invoked by Bohr in the context of measurement interactions, and about their 
role in fixing the interpretation of the wave function. EPR was intended to support those 
reservations in a particularly dramatic way. 

End of quote, from [57] 

First of all, this entry in [57] is partially incorrect, As shown in section VIII, as far back as 1927, Einstein 
was laying out his action at a distance dispute with the Quantum interpretation as in Copenhagen, and 
the problem was that Bohr, as we stated earlier, in 1927, really did not understand the gist of what was 
on Einstein’s mind in 1927. I.e. seeing the quoted sections from pages 194 to 196 of [3] , as far as the 
indeterminacy of the relative positions of minimum’s on a screen past a two slit experiment, and the 
idea of a cited “action at a distance” phenomena, as crucial, so with that, we will initiate a discussion as 
to what the EPR thought experiment was about 

Above all, in 1927, Einstein was upset by the idea of a nonpoint particle interpretation, and was an early 
adherent to the De Broglie Pilot theory, namely its Guidance equation, as a point particle, represented 
by Eq. (20) in our text. 

While, as mentioned, the interaction of Pauli and De Broglie, in Solvay, 1927, lead to the abandonment 
of the single particle Pilot theory, as mentioned in [3], at the time of the EPR thought experiment, 
Einstein still, in fidelity with Bohm, [50] was in favor of a multi particle version of the Guidance Equation 
of the Pilot model, as seen in Eq. (22) of our text.  

To begin this discussion, we urge the readers to first access [19] and to read it, if possible. Next we will 
outline the argument, pages 179-182 of [1], in terms of two spin ½ particles whose net spin is zero. 
Which according to [1] leads to the following set up, i.e. this is quoting the set up given on page 179 of  
Omnes in reference  [ 1] 

Quote:  

Consider 2 spin ½ particles, P and P . Set it so a measuring device, M ,  measures the spin component 
of P  along a direction, n , and another measuring device, M measures the spin component of system 
Palong a direction, n  

The basic idea is that the two instruments, M and M  can be arbitrarily distant from each other.  Also, 
we have that we can form a state vector with a total spin zero, which is written as 

                           1
. 1/ 2 . 1/ 2 . 1/ 2 . 1/ 2

2
S n S n S n S n                          (24) 

This above, is the State vector for total spin zero.  

End of quote of middle of page 179 by [1], now for the suppositions at the end of Page 179 of [1] 

Quote, end of page 179 of page [1] 

Assume that the measurement made by M precedes the one by   M      ( )t t   and gives the result  

. ( 1/ 2)S n s  , and the second one gives the result .S n s    



Then this reference, [1] makes the following claim pp 179-180 

Then (allegedly) there exist two complimentary properties of the spin of P (which) can be induced. They 

refer to a time t  when P is not measured while P is  t t t   . One property asserts that the spin of 

P to be defined by the initial state (here, refer to Eq. (24)), that is .S n s   . On the contrary, the other 
property anticipates the measure by M  to be .S n s   . One can then introduce the negations of the 
various properties to obtain two complete complementary families of histories. Then are easily shown to 
be consistent and the implications  
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Hold consecutively. In the two frameworks. Both intermediate assertions are therefore logically 
consistent although they are, of course, complimentary.  

Next, go to page 181 of [1] for the conclusion as to how this is viewed, as an EPR thought experiment. 

  Einstein, Podolsky and Rosen (EPR) were mainly concerned with the question of reality. They went as far 
as proposing a definition for it, or rather for an “element of reality” whose knowledge would be direct 
information about what really “is”: “If without in any way disturbing a system, we can predict with 
certainty (i.e. with probability equal to ‘unity’ ) the value of a physical reality quantity. 

So then go to the next paragraph in page 181 of [1] which is their next claim:  

  One may stop a moment at this point, for noticing how bold this step is : They are giving a definition of 
reality! This is not a definition of the category of reality of our consciousness but rather of reality itself! 

Next, still in page 181 of [1]    

After their definition, EPR proceed to show (in our example that the property .PS n s    is an example of 

reality. It indeed gives the value of a physical quantity, .S n  for the particle P , although only the distant 
particle P is disturbed by the measurement (of its only Spin component along n). Looking at the station 
vector ( here it is Eq. (24)) and using Born’s formula with wave function reduction, one finds that the 
probability .PS n s    is 1. There is no doubt that this is an element of reality according to the EPR’s 

definition. 

The linkage to the issue of the alleged incompleteness of the quantum theory is next given by the next 
paragraph: in page 181 of [1] 

EPR contended that their result implies an incompleteness of quantum theory. They said that:”The 
following requirement for a complete theory seems to be a necessary one: Every element of the physical 
reality must have a counterpart in the physical theory” 

  More to the point we can refer to page 76 of [58] by Bell, and also note that Bell is quoting [59] as an 
alleged quote of Einstein   



  The statistical character of the present theory would then have to be a necessary consequence of the 
incompleteness of the description of the systems in   quantum mechanics, and there would no longer 
exist any ground for the supposition that a future… physics most be based upon statistics.  

This is in tandem with the last part of the EPR article jointly brought up by Bell [58] and also in [19] 
whereas,  

Quote: from page 82 of [58]  

While we have thus shown that the wave function does not provide a complete description of the 
physical reality, we left open the question of whether or not such a description exists. We believe that 
such a theory is possible.  

End of quote from page 82 of [58]  

We shall, now that we have outlined the issue of alleged incompleteness of the Quantum mechanical 
wave function next go to a description of how this presumed absurd model, outlined by the EPR paper 
as allegedly impossible, experimentally became the now thriving field of Quantum entanglement. 

X. Now for a quantum mechanical answer to the charge of 
incompleteness, as raised by Einstein, in the [19] reference and 
subsequently amplified by Bell in [58]  
A good working definition of what is called entanglement is given by Wiki [60] as 

Quote from [60]  

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are 
generated or interact in ways such that the quantum state of each particle cannot be described 
independently of the others, even when the particles are separated by a large distance—instead, a 
quantum state must be described for the system as a whole. 

Now, why did Einstein reject such a configuration, as impossible? This is , from Wiki again what he 
assumed to be impossible: 

Quote, from [60] 

It thus appears that one particle of an entangled pair "knows" what measurement has been 
performed on the other, and with what outcome, even though there is no known means for such 
information to be communicated between the particles, which at the time of measurement may be 
separated by arbitrarily large distances. 

End of quote 

This is exactly the outcome outlined in section IX, above, and to add insult to injury as far as 
electrons, as was the example given in section IX, that [61] , definitely do show that the predictions 
of the EPR, are given experimentally. 

Furthermore, there is on line a simple explanation as to the violation of the Bells Inequality rules, as 
given in [62] by Fellows, i.e. with the main point given below 

Quote , from [62] top of page 14 



Quantum theory sidesteps that problem by simply asserting that entangled particles don't have a 
particular spin or polarization until the spin/polarization of one of the entangled particles is actually 
measured. According to quantum theory the act of measuring fixes the spin/polarization for both 
entangled particles at the same instant in time. Einstein believed, however, that this explanation still 
necessarily means that action taken at one point in space must have an instantaneous effect on a 
particle in a distant location, and that such an effect is prohibited by the Special Theory of Relativity 

End of quote 

I.e. the question, ultimately of the Entangled states, is what information is actually exchanged, and at 
what propagation speed?  i.e. this will be the point of deliberation of the next section.  

This is what is brought up again, in the 2nd part of page 14, by [62] whereas we  have the given quote 

Put another way, Bell simply assumed that the experimental apparatus used to measure the entangled 
particles plays a completely passive role, having no significant effect on the resulting statistics. This tacit 
Passive Apparatus Assumption, in turn, leads directly to the additional implicit assumption that, in order 
for an entangled photon to "know" whether its axis of polarization should be at one angle or another 
when it reaches its polarizing filter, it must "know" – for each of the different optional polarizer angle 
settings – how it must respond when it arrives at any one of those optional settings. In other words, if the 
correlation experiment allows for three optional polarizer settings, the minimum required bits of hidden 
information must total no less than three. As will be shown below, there is no logical basis for the first of 
these two critical assumptions, and the second – the Minimum Information Assumption – is 
demonstrably false. These erroneous assumptions are, in fact, the source of the mystery surrounding 
quantum entanglement! The failure to recognize the falsity of those two assumptions is precisely what 
has misled the entire community of physicists and researchers exploring this extraordinarily important 
area of science into believing that the statistical results of correlation experiments are necessarily 
inconsistent with Einstein's Special Theory of Relativity and the Locality Principle. 

So, then at what speed does information as to the two conjoined states, connected by entanglement 
travel, and at what speed? What is precisely communicated between two entangled conjoined states? 

This will be the next section of our article. 

XI. What information is exchanged between entangled states, and at 
what speeds of propagation? , i.e. doing away with the presumed 
‘necessity’ of hidden variables. The Quantum entangled states may 
not be a separable physical phenomenon.  
What we are doing here, is to look at what information is exchanged between entangled states, and 
what this pertains as to the question of presumed hidden variable theories. 

Renato Renner∗ and Stefan Wolf  in [63] characterize the issue of locality (preferred by Einstein as a 
guiding principle) or the issue of nonlocal quantum states, which is elucidated in  words in [64].  

THE PROBLEM IS, that LOCALITY, as demanded by Einstein “demands” Faster than light transferal of 
‘information’ which violates special and general relativity. 



Now, [62] has a novel introduction as to how to avoid this presumed problem, namely first starting off 
with what was presumed to be impossible: 

Quote, from page 4 of [62] 

The EPR paper constituted a full frontal attack on the very foundations of quantum theory. In response to 
that attack, Niels Bohr – one of the greatest proponents of, and contributors to, quantum theory – 
pointed out that the so-called "EPR paradox" was entirely predicated on the aforementioned 
fundamental principle of relativity theory which states that action taken at one location cannot have an 
instantaneous effect at some other location, a principle often referred to as the Locality Principle. Bohr 
struck back at the EPR paper by arguing that the Locality Principle simply must not be valid. In other 
words, according to Bohr, measuring the location of one of a pair of entangled photons does have an 
instantaneous effect on the other entangled photon, even though it may be located a great distance 
away. Bohr dismissed the EPR paradox by saying that the Locality Principle simply must not be part of 
our reality, despite Einstein's belief that it should be. 

End of quote:  

So what is a reasonable replacement for “locality”? 

First here is a description of the famous Bell’s inequality which has been repeatedly shown to be 
problematic. 

Quote, from page  5  of [62] 

Bell's Inequality is written as some version of the following equation:  

                                              n[X,-Y] + n[Y,-Z]    n[X,-Z]                                                                    (26) 

 

That equation, however written, expresses a relationship between three related quantities (X, Y and Z). 
Stated most simply, Bell's Inequality says that -- for any three categories or groups of any kind of items or 
objects of any sort one wishes to consider -- the number which will fall into the first category, but not 
into the second category, plus the number which fall into the second, but not the third category, will 
always be equal to or greater than the number which fall into the first, but not the third category 

End of quote. From page 5 of [62] 

You can look up how [63] re-stated the Bell’s inequality, but the gist of it, is that the terms which are 
described as in different categories, are thereby linked in what is a ‘non-local’ state.  

So what is a “nonlocal” state, and what does this happen to say about propagation between point A, 
and Point B, of different positions in a ‘generalized’ ‘nonlocal’ state? 

Here is a working definition to consider: 

In theoretical physics, quantum nonlocality most commonly refers to the phenomenon by 
which measurements made at a microscopic level contradict a collection of notions known 
as local realism that are regarded as intuitively true in classical mechanics. 

So, how does one create a state consistent with all of this? 



In short, entanglement of a two-party state is necessary but not sufficient for that state to be 
nonlocal. It is important to recognise that entanglement is more commonly viewed as an algebraic 
concept, noted for being a precedent to nonlocality as well as quantum teleportation and superdense 
coding, whereas nonlocality is interpreted according to experimental statistics and is much more 
involved with the foundations and interpretations of quantum mechanics. 

So what is entanglement? And why is this not necessarily the same as nonlocality? What we are 
interested, in, in entangment is the process of exchange of ‘information’ 

Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom 
or photon) can be transmitted (exactly, in principle) from one location to another, with the help 
of classical communication and previously shared quantum entanglement between the sending and 
receiving location. Because it depends on classical communication, which can proceed no faster 
than the speed of light, it cannot currently be used for faster-than-light transport or communication of 
classical bits. While it has proven possible to teleport one or more qubits of information between two 
(entangled) atoms. That is for now technically all which is allowed.  

Any application of Entanglement in terms of information exchange by necessity involves application 
of Quantum Teleportation. 

Note that the fact is, that we are using classical equipment, means the process is bound by the 
speed of light. 

However, the entangled positions, may, by ‘quantum’ logic sharing information at ‘superluminal 
speed’ which we cannot measure. 

We can only measure the teleportation phenomena, through classical devices, which restrict the 
information to the speed of light. 

I/.e. the encoding of teleported information is done through classical devices, but the precursor of 
interconnectivity between the ‘entangled’ states may be ‘instantaneously set’ at superluminal speeds 
(i.e. effective instantaneously). 

Sounds confusing? It is, but the precursor of quantum teleportation of information is quantum 
entanglement, and  

A. Quantum teleportation in the present time, due to classicality in the emission/ receiver ends 
of allegedly separated states, is bound by the speed of light. 

B. Entanglement, as a precursor for states being “aligned” as a necessary condition for 
Quantum teleportation may, indeed have NO ‘speed of light’ restrictions! 

How do we know this? This is the current state of the art, and is in its own way richly confirmed via 
these two references:[61] and [66] 

I.e. the mix up in the language of entanglement and, of quantum teleportation, is then solved though 
a careful reading of the two references, above, plus a review of two others, i.e. [67] and [68] 

Note that a careful reading of reference [69] and its remarks, as we will quote: below 

Quote [69] in the abstract. 

Quantum mechanics, information theory, and relativity theory are the basic foundations of theoretical 
physics. The acquisition of information from a quantum system is the interface of classical and 
quantum physics. Essential tools for its description are Kraus matrices and positive operator valued 



measures (POVMs). Special relativity imposes severe restrictions on the transfer of information 
between distant systems. Quantum entropy is not a Lorentz covariant concept. Lorentz 
transformations of reduced density matrices for entangled systems may not be completely positive 
maps. Quantum field theory, which is necessary for a consistent description of interactions, implies a 
fundamental trade-off between detector reliability and localizability. General relativity produces new, 
counterintuitive effects, in particular when black holes (or more generally, event horizons) are 
involved. Most of the current concepts in quantum information theory may then require a 
reassessment 

 

End of quote, 

Upon a careful re reading of their article, and perusal of the language, the difficulty and the alleged 
clash with special relativity can be removed simply by stating: 

A. Quantum entanglement, as a precursor to Quantum Teleportation does not have a speed of 
light limitation 

B. The experimentally vetted, so far limitations of propagation speed for  quantum teleportation, 
mainly due to the classical equipment in receiver / transmitter set ups is bound by special 
relativity. 

The adaptation of A. above, removes the onus of locality. I.e. the author views Bohr as essentially 
correct in is statement that there is no reason to invoke locality 

C. Until we have evidence, saying otherwise, the separate from entanglement phenomena of 
Quantum teleportation at this time appears bound by Special relativity.  

There may be in the future equipment designed which removes the onus of classicality, in the 
measurement phenomena, but right now, we are not there yet. 

In the meantime, here is, in [70] a brilliant commercially useful way to utilize all of this, and to remain 
in fidelity with the 1927 Solvay conference, and the commercial uses of Quantum entanglement aided 
quantum teleportation. 

Finally, here is another view of quantum information, which is popular which I do not quite agree with 
but which may be acted upon technologically, i.e. see [71] 

Having said all this we next will investigate the role of Time, as viewed in Solvay, This is important, 
because it heavily impinges upon the idea of quantum statistics. We have delineated a solution to the 
presumed conflict between GR and Quantum entanglement, via the device of saying that at this 
present time, there appears to be a speed of light limitation on Quantum teleportation, but this is 
separate from Quantum entanglement. And that quantum entanglement is a precursor to speed of 
light bound Quantum teleportation (at least in terms of known technological demonstrations at this 
time).  

So, is time a classical, quantum, or an embedding of quantum mechanics within the frame work of an 
overarching deterministic phenomenon?  We then will proceed to section XII, where some of these 
issues are ascertained. 



XII. Actual information exchange, commented on with respect to 
entanglement and how this differs from quantum teleportation. 
In the idea of quantum entanglement, Quantum entanglement is a quantum mechanical 
phenomenon in which the quantum states of two or more objects have to be described with 
reference to each other, even though the individual objects may be spatially separated. This 
leads to correlations between observable physical properties of the systems. 

Note this point, i.e. in entanglement we are talking about correlation of observable physical 
properties. 

How do we correlate properties in two separate physical objects, in entanglement? First take a 
look at [72] and see the following quote, on page 10 of [72] 

Quote 

Another common attitude is that the violations of the Bell inequalities (confirmed experimentally) have 
exposed an essential nonlocality built into the quantum description of Nature. One who espouses this 
view has implicitly rejected the complementarity principle. If we do insist on talking about outcomes of 
mutually exclusive experiments then we are forced to conclude that Alice’s choice of measurement 
actually exerted a subtle influence on the outcome of Bob’s measurement. This is what is meant by the 
“nonlocality” of quantum theory. By ruling out local hidden variables, Bell demolished Einstein’s dream 
that the indeterminacy of quantum theory could be eradicated by adopting a more complete, yet still 
local, description of Nature. If we accept locality as an inviolable principle, then we are forced to accept 
randomness as an unavoidable and intrinsic feature of quantum measurement, rather than a 
consequence of incomplete knowledge. 

End of quote 

As stated by the author, the idea of avoiding having hidden variables as a way to explain a linkage 
between presumed widely separated in space events. We assert here that in effect, what we are seeing 
can also be viewed as a quantum extension in space, via entanglement of a quasi – single matter/energy 
wave. I.e. a nonlocalized  state. 

Such a supposition can only be  held if in effect, the EPR outlined a space-(instantaneous) bridging of 
nonlocal states to each other, and that in effect, this morphing, occurred ‘instantaneously’, i.e. a super 
wave function of space-time. By default. 

I.e. The correlation so referenced in quantum entanglement is stranger than what is supposed. Although 
the name is inspired by the teleportation commonly used in fiction, there is no relationship outside 
the name, because quantum teleportation concerns only the transfer of information. Quantum 
teleportation is not a form of transport, but of communication; it provides a way of transporting a 
qubit from one location to another, without having to move a physical particle along with it. 

This means a qubit of information exchanged for site A to site B, at least 100,000 times faster than 
C, for correlation of information. 

So the information of correlated states is transferred at 10^5 times the speed of light, whereas in 
doing so no mass,  



In so many words, ,Entanglement is not of particle or energy transfer,  but of communication; it 
provides a way of transporting a qubit of information for property correlation of states from one 
spatial location to another, without having to move a physical particle along with it. 

While information, i.e. information of properties which may be correlated between each other are 
exchanged at up to 10^5 times the speed of light, any properties, say of matter-energy transfer, are 
moved at “only” the speed of light. 

Hence, this shows what sort of ‘information may be exchanged almost “instantaneously” whereas 
the projection of matter/energy, either as a particle-wave duality or something similar may only do it 
at the speed of light. 

It is a truism that correlation ‘information” exchange between two spatially separated states would  
not move the time ‘clock’ but anything involving matter and energy transfer would ‘move the time 
clock. Hence it is time to discuss what can be said, as an extension of Solvay’s time in physics 
deliberations as brought up in Solvay, 1927. 

Hence we go to the next part of our deliberation. That is given as in XIII. Below. 

 

XIII. Examining the idea of time, as ascertained in the Solvay 
conference, with open issues brought up.  
The problem with time, as given in the Solvay meeting is that it is still in many times stuck in debate by 
advocates whom are in one way or another in between the probabilistic interpretation of space time, 
locality of particles. Or in favor of dynamics as given in a governing equation of the sort given by Eq. 
(22), i.e. our ‘point source’ evolution equation of the Pilot model, as given by De Broglie, (subsequently 
later updated by Bohm), as is discussed in [3]. The modern preference is generally with the Heisenberg-
Bohr picture of probabilities of the location of the sub atomic pictures.  

This revulsion against the probability approach toward the location of a “point particle” was reflected in 
the 1927 clash between Bohr – Einstein over the double slit experiment, as given in Appendix A, but 
what is not appreciated, as is noted in pages 143 to 149 of [3] that Schrodinger himself struggled with 
the idea of a probability interpretation of electrons in atoms, and tried to find a middle ground between 
the very classical de Broglie “governing equation” as given in Eq. (22) and a probability interpretation of 
electrons in atomic orbits. One can see the flavor of his deliberations in page 131 of [3], which was a 
result of a profound unease with the purely probability approach given by Bohr and Heisenberg. 

Today, the debate is more nuanced, but in certain ways far more dramatic. 

Zeh, in [73] writes that: on pages 3 and 4, that  

Our world is known to obey quantum theory, which is characterized by an indeterminism occurring in 
measurements and other “quantum events”. There is absolutely no consensus among physicists about 
the interpretation and even the precise dynamical role of this “irreversible coming into being” of the 
observed facts, such as the click of a counter. Has it to be regarded as a specific part of the dynamical 
laws (as assumed in the form of von Neumann’s “first intervention” or more explicitly in collapse 
theories), as representing events that (according to Pauli) occur outside the laws of nature, as a “normal” 
increase of information (as claimed in the Copenhagen interpretation), as determined by hidden 



variables that are not 4 counted in conventional ensemble entropy (as in Bohm’s theory), or as the 
consequence of inderministically splitting observers (as in Everett’s interpretation)? Some quantum 
cosmologists refer to initial uncertainty relations or “quantum fluctuations” in order to justify the 
stochastic evolution of their quantum universe, although a global quantum state is never required to be 
“uncertain” (only classical variables would be). 

In other words, no consensus on the origins of time, so it is difficult to initiate professional  discussion on 
the defacto origins of time, as far as the creation of the universe, other  than the supposition as 
commented upon in many parts of the literature of a linkage between entropy and time. 

However, we  should in fact, view this as progress, as compared to when Schrodinger, as well as even 
Bell, in 1987 who in [74] write “Are there Quantum Jumps” as to recounting the struggles Schrodinger 
had in [75] with particle tracks in track chambers, since he had replaced point particles with wave 
packets. But in reality, both Bell and Schrodinger objected to an allegedly smoothly evolving QM 
dynamics starting initially with Stationary states as a start, then violently interrupted by abrupt 
probability jumps.  

As given by [74], Bell wrote that Schrodinger objected to what he regarded as hangovers from the Old 
Bohr theory, i.e. the idea of radical quantum jumps, and that he, Schrodinger, as given in [75] wished to 
have the dynamics of a wave packet as totally dominated by the wave function itself. 

I.e. if we have such violent jumps, is this due to a fault in mathematical formalism, or was it due to our 
understanding of time itself? 

In 1927, the Solvay conference had no idea of the existence of solitons, which do exhibit solitary initial 
states, and  the following marriage of the idea of a Schrodinger equation, with a non linear potential 
with Solitons [76] , i.e. the Schrodinger equation Schrodinger was aware of had LINEAR potentials.  

So he could only think of faulty mathematics, or of a faulty interpretation of time itself.  

So with this introduction, let us go to the idea of time evolution and the nature of time, as viewed in [3] 
and the participants of the Solvay conference, 1927, and contrast some of the issues arising then , and 
compare that with the modern issues, especially those brought up by Zeh in [73] .In order to start the 
inquiry we want on this most contentions topic, a reference to a PhD dissertation by Thomas Pashby 
[77] on the role of time in Quantum theory will be briefly alluded to, as well as a discussion of the 
problem, in [77] as to the passage of time, and what makes a ‘good’ quantum clock. 

Quote, from [77], page 121 

6.1 NO IDEAL QUANTUM CLOCKS  

Let us examine exactly what Pauli’s Theorem manages to tell us about quantum clocks. Classically, a 
clock is a time function that covaries along the dynamical curves either locally or (in addition) globally. In 
Section 2.3, this was distinguished from an event time, which covaries with the initial data (and in the 
opposite direction). In Hamiltonian (analytical) classical mechanics, the existence of a clock function was 
sufficient to allow one to infer the value of the time parameter (up to periodicity) from the instantaneous 
state (in conjunction with the initial data). There is a sense in which quantum mechanics replicates this 
idea quite nicely, and a sense in which it makes it much more problematic. First, the good news. Given a 
non-periodic quantum system whose Hamiltonian is exactly known, precise knowledge of the state at 



two times suffices to determine the time interval between those states. If one knows the Hamiltonian 
and the state ψ at t = 0 then, since the Schrodinger equation is first order in time, one knows the state at 
all other times ψt = Utψ. This family of states parameterized by t associates with each instant of time t a 
unique state ψt , knowledge of which can be used to infer the elapsed time. This is analogous to the use 
of a classical time function to infer the elapsed time in terms of a parameterized curve in phase space. 
Where quantum mechanics complicates matters is in seemingly providing in principle limitations on the 
extent to which the state can be precisely known at a moment of time. 

End of quote,  

i.e. we will use this as a start to discussion of some of the positions presented at Solvay, 1927, with 
the positions of each of the participants outlined. 

A good place to examine the interplay between classical and quantum systems, as visualized, is to go 
to [5], page 175, the section on “ The Introduction of Action-angle variables” and in particular to go to 
pages 181-183 which derives in part the reasoning Dirac used to obtain equations of motion in the 
case of the Hydrogen atom, as well as linkage to their classical equation formalistic counter parts. In 
doing so, the issue of how well a quantum state can be known are partially addressed, and then we 
will review what was said by other Solvay participants in 1927 as far as what is accessed in the 
passage of time, and quantum systems. 

XIV. Action angles, both classical and quantum and the 
problems of time in Quantum systems 
In page 181-2, of [5], Dirac obtained a result for 1/r , with this  result used later for the angular 
dependence of an angle change in time of the orbit  

The change in time of the angle of an orbit of the Hydrogen atom showing up in page 183 of [5]  as, if 
w the time derivative of the “uniformizing angle w , and   a polar angle of an orbit about the Hydrogen 
atom, and this is the quantum mechanical case, which is written as 
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The term, 1/r, squared, as in the Eq. (28) was given on page 182 in reference [5] as having the following 
very long derivation, as given in Eq. (30) below, next page,  where we assume, also, that 

2
y x ek xp yp m r      is in the quantum mechanical  case, a constant of motion, and that the 

equation given below closely corresponds to the classical equation of motion as given by 1/r for an 
ellipse with the lattice rectum l , eccentricity  , and with  (classical) as being the angle between the 

major axis of the ellipse, and the angle given as 0  . Then the classical 1/r equation has the form 
given , if we can say 
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And we have the following   on the next page for details of the quantum version which gives justification 
for the filling in, of the similarities of 1/r in both the classical and quantum cases, as alluded to in Eq. (28) 
above.  
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The main point here, being also that we can represent the momentum variable as a constant of motion, 
in the quantum case, i.e. note that if we have a mandate to explain for the hydrogen atom 
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We thereby have obtained an angular dependency behavior, in the onset of jumps between energy 
levels n and m, of the hydrogen atom, and at least qualitative connections to the classical and quantum 
‘pictures of reality’ with some correspondence to the classical to quantum regimes implied by  Eq. (15) 
of our document. 

In terms of what was brought up 2 pages before about the problem of quantum indeterminacy, in terms 
of what constitutes a quantum jump, the similarities between the classical and quantum regimes for 1/r 
argue that if there is a stationary state, or nearly stationary, as would be implied by the ground state of 
the hydrogen atom, may be in a sense possible, and that there would have to be a case by case analysis 
of what would correspond to a classical 1/r and quantum 1/r picture of hydrogen like atoms as to make 
full sense out of the results from Eq. (28) to Eq. (30) 

Furthermore, to understand the indeterminacy of states, possibly implied by Eq. (27) in this document, 
one would have to go to a case by case analysis of all the terms on the right hand side of Eq. (27) in 
order to come up with a careful iteration look at as an example, something like 
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Actually it is worse than that, i.e. this will now have to explore the inter relationship between quantum 
statistics, as envisioned by both Bohr, Bohm, Einstein and Schrodinger, and the issues of what role time 
played in their formulation, as argued from 1923 to 1927, in the Solvay (1927) conference, as to 
microstates and macrostates of presumed quantum systems, and the role of time in their formulation 
and analysis. 

XV. How the Solvay participants, in  1927 analyzed quantum statistics, 
in terms of presumed roles of time, for physical systems modeled , as 
a view as to the presumed role of Time in physics.            

 We begin this with a side view first, as to what is a way to embed the quantum paradigm in 5 
dimensional physics, as given by Paul Wesson,  where he presented a deterministic embedding in 5 
dimensions, as of the 4 Dimensional treatment of the Heisenberg Uncertainty principle.[78] 

This among other things is a fulfillment of the dream by Kaluza Klein [79], of sorts as far as how to unify 
Gravity and Electromagnetism in cosmology, but it has a much bigger cache than this, mainly as to 
understand the role of time, itself in quantum statistical ensembles, i.e. the idea of a deterministic large 
scale state, which would encompass quantum microstates in an ensemble within which the quantum 
microstates would be a way to analyze basic quantum thinking in terms of time dependence. In doing 
this, it also links itself to the question of why Schrodinger was so aghast at the idea of quantum jumping. 

Let us now, briefly allude to the [78] and [79] reference, namely: 

Start with the idea of an embedding of four dimensional space-time in a 5 dimensional time interval. 
[78, [79] and realize its inter connections with [80], [81], [82], [83], where L = length of canonical metric 
in 5 Dimensional theory 
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And then we present, the five momenta as given by  
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Then, if  
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One eventually, as given by [78] obtains the Heisenberg type of relations that 
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Depending upon how we evaluate 
2

n dl

c l

     
   

, we can then say that if /n L l , and if we have L as 

the length of the additional dimension, that we have from deterministic reasoning in 5 dimensions 

achieved Eq. (35) which in four dimensions, depending upon how 

2
n dl

c l

     
    is evaluated is in common 

with x p     [84]  

To proceed with this further in [85] we have that E t     , and that the following holds, in 
cosmological physics, in a general sense, i.e. in cosmology we can depend upon the following 
assumptions, namely, as derived by the author in [86] 

 

We use the approximation as presented in [86]  which we reproduce below as also in  [87, 88]  
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If we use the following, from the Roberson-Walker metric [86] 

                                
2

2

2 2

2 2 2

1

( )

1

( )

( ) sin

tt

rr

g

a t
g

k r

g a t r

g a t d



  






 
  

   

                                                        (37)               

         

Following Unruh [67, 68] , write then, an uncertainty of metric tensor as, with the following inputs  

2 110 35( ) ~ 10 , ~ 10Pa t r l meters             (38)         

Then, if  ~ttT   [86, 87, 88]  
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This Eq.   is such that we can extract, up to a point the HUP principle for uncertainty in time and energy, with one 
very large caveat added, namely if we use the fluid approximation of space-time[86]   

                                          ( , , , )iiT diag p p p                                                    (40)         

              

Then by [86]  
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In this case, looking at a  re write of the Eq. (35) to read, approximately as              
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I.e. what we have done is to say that Eq. (44) establishes that the HUP as derived in [86] is embedded 
within a deterministic structure in 5 dimensional Kaluza – Klein theory.  

We argue that Eq. (44) which is embedding the HUP, and in effect, time within a deterministic 5 
dimensional structure, as given by [78] is in the end no different from the radical supposition given by 
Schrodinger as to quantum statistics, which was argued over in Solvay, as seen in [3] and [5] that the 
modeling of black body style quantum statistics, for a macro system was in a state which did not have 
an explicitly time dependent dynamic, I.e. as given  in [36] by Shankar,  
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Notice that this is a standing wave, frozen in space-time result, for a quantum Macrosystem. There was 
in this accounting, only time independent quantum dynamics, with the blackbody statistics fixed, if you 
will by macroscopic values of both T, temperature, and frequency,  . This was held by Schrodinger, as 
the inevitable results of a quantum macro system, with the microscopic time fluctuation dynamics, for 
time independent Schrodinger equations, due to the microscopic behavior of sub systems, in Quantum 
Mechanics, as stated within what could pass, , as could Eq. (45) as a macroscopic deterministic system 
(i.e. if frequency,    , and temperature T. fixed, by the relation given as Eq. (45)  

 

We will discuss more of this next section, with more examples of microscopic and macroscopic physics 
examples, which were argued over in Solvay, 1927. 

XVI. The view as far as [3], i.e. the request by Lorenz.  And the 
astonishing later push back against this idea by Sir Author Eddington  

Quote, from page 209 of [3] by Lorenz 

“A conclusion, of theoretical considerations ,and not assign an a priori axiom, though may well admit 
that this indeterminacy corresponds to experimental possibilities .would always be able to keep my 
deterministic faith for the fundamental phenomena..... Lorentz seems to demand that the 
fundamental phenomena be deterministic, and that indeterminism should be merely emergent or 
effective. Probabilities should not be axiomatic, and some theoretical explanation is needed for the 
experimental limitations encountered in practice”.  



From the rest of this quote from the Paragraph in question, which explains Lorentz’s remarks. 

This view would nowadays be usually associated with deterministic hidden variables theories, such as 
de Broglie's pilot-wave dynamics (though it might also be associated with the many-worlds 
interpretation of Everett). De Broglie's basic  equa ons  (the guidance equation and Schrödinger 

End of quote of page 209, [3]  

In the deterministic time evolution camp were Lorentz, sometimes Schrodinger with respect to 
quantum Macrosystems, as has been explained above (he thought otherwise of Quantum 
microsystems), Einstein, De Broglie, and others. 

In the probabilistic camp, of time, and its involvement with quantum physics, were Bohr, Dirac, Pauli, 
Heisenberg, and Schrodinger for quantum microsystems. 

 I.e. Schrodinger did not have this view as far as quantum macro systems, and as noted earlier, he had 
no tolerance as to quantum jumping which he stated contravened the smooth evolution of states he 
expected from the Schrodinger equation. See [74] as far as Bell’s restatement of the Schrodinger 
position as to this matter.  

At the opposite end, firmly  of the non-deterministic camp was no other than Sir Author  Eddington 
whom in [  89  ] in the 1920s, as cited by [ 78] , page 134-135 made the astounding claim for his time  
that the cosmological constant were associated with a given 1/  squared length, [90] , Eddington used 
the following 

                                    Cos 1/ radius universeR                                                                                 (46)     

  This lead to [91], [92], [93]     , i.e. many of Eddington’s positions were far ahead of his time,  , and in 
[91] his value for the cosmological constant was,   9.8 times 10^ - 55  centimeters ^ -2 

Also as given by [78] Eddington tied this radius of the universe, to the HUP, with the result that  

                                  ( )radius universeR p allowed momentum                                         (47) 

i.e. he thought that the permitted variance of momentum of space time ‘particles” was very small, but 
this as a consequence of Eq. (47) 

This presages much modern thinking, and that Pauli, as stated in [3] called it “romantic nonsense” but 
among other things, Eddington , as given in [3], [5] thought that the number of allowed “particles” in the 
Universe, was about 10^80.[90]  

I.e. if one uses the Ng idea of infinite quantum statistics [94] with  

                                                       S (entropy) ~ n (particle count)                                         (48) 

Then if one used the idea of Bayronic particles being, n, ( Eddington did not know of Dark matter!!), this 
is within 8 orders of magnitude of the 10^88 lower bound to the Entropy of the Universe as written up 
by Giovannini, in [95]. i.e. see page 156 of [95], formula 6.119 for details. 

It would be a stretch to connect this with  [96], but at least Eddington was very much in sync with 
modern ideas. I.e. the idea of entropy, as connected to an arrow of time, and its generation is a fairly 



modern idea. However, the flavor of the ideas cited in [90] is not incommensurate as a precursor to [97], 
and [98] has a section, page 104 which refers to discrete versus continuous eignspectrum values in 
Quantum mechanics, which may be a precursor and extension of the Eddington hypothesis so discussed 
as to the extreme values of the cosmological constant, the and the uncertainty principle. For those 
whom wish to know more of Eddington’s search for a “Theory of Everything” 
the readers are suggested to access [99] and to compare this with [100], ie. Penrose’s compendium as to 
the fate of the physics quest for a final theory.  

 

XVII. A suggestion by Corda, and others as to Torsion, and Baker’s idea 
as to a varying time rate, as compared to time ideas in the Solvay 
conference, 1927 contrasted with Ephemeris time, by Barbour. 
In [101] Zerczykowski, re stated the Barbour Ephemeris time result [102] of  
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In this case, the term jx  refers to the position of a jth ‘Astronomical’ body’, and we ascribe as in 

common with [103] by G. Clemence . If this is purely a classical result, then the difference in total energy 
of the system denoted by E, minus V, i.e. this being proportional to  a dimensional recasting as in 
dimensional terms to look like 
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Then as far as classical reasoning, we would have, up to a point. 
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This means, that the operative thing to keep track of would be a rough tally of mass times position 
squared,   divided by ‘mass times the square of object velocity. This would be very much in a mean 
value, so as the relative magnitude of velocity increased, the value of Ephemeris time would drop. 

Now, let us turn to Appendix B, as given by Dr. Baker to the author. Namely the alleged slowdown of the 
time rate. The only support which this author can see in it would be in a variant of the reasoning 
presented from Eq. (49) to Eq. (51) in a classical demonstration of a shift in the magnitude of t . i.e., 
the larger the velocity becomes, the lower t . Note that in doing this we are deliberately avoiding the 
quantum mechanical step which tends to on average to a semi classical result given by 
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Full details of this analysis would need a meshing of a relativistic version of Eq. (51), and the author may 
indeed get to doing it at a later date. However the issue Dr. Baker has raised is suggestive and should be 
thoroughly analyzed. The author finds that aside from inevitable scaling arguments, that the muons are 
still a sub system, within a larger general system. I.e. the adage of Schrödinger who postulated that 
quantum sub systems, of a macrosystem definitely exhibit quantum mechanical time dependent 
behavior. Equation (51) is not quantum mechanical, but it is a sub system, and so the same rule by 
Schrödinger, as to sub systems exhibiting definite time dependence, may be applicable here. I.e. think in 
terms of time variance. Readers wishing to follow upon what Dr. Baker is thinking of can go to [23]. 

Next, we will refer to the results as of Torsion, and more given in the early universe by [26].  

On page 12, of the [26] reference there is the following quote: 

Recently, it has been shown that observations admit the violation of ordinary energy-momentum 
conservation law meaning that the energy-momentum sources are nondivergence-free tensors in curved 
spacetimes [69]. Although this result motivates some physicists to consider the cosmological 
consequences of this energy conservation violation in f (R,T) gravity [70, 71], the idea that the energy-
momentum tensor is not conserved in curved spacetime is coming back to Rastall [10] 

End of quote 

How startling this is, cannot be overstated. A lack of energy-conservation, in effect, is implying that 
would be applications of a Hamiltonian based analytical system will be harder to employ. I.e. when there 
is a time dependence, in energy, as applied, then there is a divergence from the H = E rule. I.e. the 
Hamiltonian does not equal the total energy.  

In other words, [26] is saying that a Hamiltonian based quantum gravity model, as to early universe 
cosmology, a.k.a. the style of ADM theory, as given in Crowell, [105] will not work in this model of 
cosmology as given by [26], i.e. only if gravity is embedded with in a deterministic structure , as would 
be quantum mechanics, i.e. see [25] by t’Hooft.  

In other words, this model of relativity if it has any relations to quantum gravity at all would be 
quantized, if a person wanted to do that, after finding a deterministic embedding structure for would 
be quantization, first. As given by [25], which would then go right back to the .quantum structure. So 
[26], although it involves commutation relationships, is not amendable to the sort of classical- 
quantum bridging as was done by Dirac in [107] only if the following occurred. 

A, Find a deterministic super structure which would embed quantum mechanics in a general sense 

b. Afterwards, show that this same embedding structure would be commensurate with the respect to 
the description of how time is analyzed in [26] 



c. Finally, show that there is a bridge between the time dynamics of [26] which does not contravene 
the dynamics of time evolution as set within the Ricci tensor structure of GR. i.e. see [106] 

The Barbour analysis,  as referred to in Eq, (49) as introduced by what is called ‘shape dynamics’ by 
Barbor, and amplified in [106 ] STATES specifically that ( see page 163 of reference [107) 

Quote 

All textbooks and popular accounts of the subject (time evolution) positively encourage us to do so. They 
all contain ‘Pictures’ of space-time. Now the picture is indeed there, and very wonderful it is, too. But it 
arises in an immensely sophisticated manner hidden away within the mathematical structure of the Ricci 
tensor. The story of time as it is told by General Relativity unfolds within the Ricci Tensor.  

 For the reason noted above this quote, it is unlikely that Hamiltonian based GR, based upon 
quantization via Hamiltonian mechanics, can work with the Ragstall theory. I.e. the Hamiltonian in ADM 
theory is, times a wave function of the Universe, equals zero. But the Hamiltonian structure, as 
quantized, even if amended by the arguments given in [96] for an arrow of time would require 
modification, and so then with this, we conclude this section and prepare to analyze [22] and [27] issues 
in terms of relationship to the issues brought up in [3].  

 

XVIII. Introduction to Kieffer’ [22] Reviewing an argument by Kieffer 
about his page 265, with its modified Einstein equation put in, and 
what it portends as for semi classical approximations linked to 
quantum systems in cosmology. 
As was stated by Kieffer, there is a relationship between a Hamiltonian form,, H(Hamiltonian), and a 
constraint equation, for momentum Np , along the lines of 
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This is , according to Kieffer, the Poisson brackets, equivalent to the following 

What we are looking at is, if we set the Lapse function, N, as = 1  
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Here, the   is a scalar field (here, called a ‘homogeneous field’) , m is  amass term, and a  the scale 

factor, and   the cosmological constant.  If m is set equal to zero, this has a simple m= 0  olution with 
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It cannot be solved analytically, if m is not equal to zero. Now as to a general problem between the 
Solvay 1927 conference methods and the application to GR will be alluded to, next 

I.e. this is in part why the problem of quantum gravity is so difficult. We will see that there is both by 
argument given by Dirac, as to inter relationships between the Poisson brackets and quantum equations 
of motion which create serious difficulties. But more seriously than that, using a very general set of 
principles, we will also see that there is a problem where one could conceivably make a quantum-
classical bridge to the Fluid equation, relating evolution of the energy density, expression of GR, and 
quantum averaging to mimic classical conditions. However, in order to have acceleration of the universe 
covered, which is needed, we have different results of the Friedman equation (classical form) and 
Friedman equation (general relativistic form), which means that Ehrenfest type methods for connecting 
general relativity and Quantum systems would probably be next to impossible. So with that, we go to 
the next section. 

XIX. A generalized problem to making quantization of the Einstein 
field equations elucidated by first principles. 

Worse than that, we do not have a quantum mechanical equivalent, and this due to the difficulties in 

terms of finding a quantum mechanical equivalent to the Poisson brackets  , ( ) 0Np H Hamiltonian   

which is readily transferrable to the Friedman equation , i.e. so far a quantum bridge between quantized 
versions of Eq. (54) and Eq. (55) does not exist, right now. 

i.e. the lectures on quantization of a classical Hamiltonian given by Dirac, in [108], pages 25 – 43 is 
ironically made more fraught by the requirement of extending the Hamiltonian i.e.  if we have say a  as 

so called first class secondary constraints, page 25 of [ 108 ] we find that there is an inability to do the 
following, if we wish to transfer to quantum systems, we need to do the following, i.e. add to the initial 
classical Hamiltonian, TH  
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Eq. (57), in a Poisson bracket formulation, was used by Dirac to transform to a set of quantization 
conditions, in pages 25 to 43 of. The problem is, that it is difficult to come up with constraint equations, 
as given in the top level of Eq. (57) 

 
The following is easy to do, if you ignore constraints 
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Try doing this, to have equivalence with Eq. (57) and match that with Eq. (54) to Eq. (55). i.e. what is so 
difficult is to put in a Hamiltonian system, for gravity, which is commensurate with Eq. (57) which then 
leads to an extended Hamiltonian. 

Dirac claims the bridge from Poisson brackets to the situation represented by Eq. (58) always involves a 
carefully set extended Hamiltonian situation. I,.e. see his discussion in 33 to page 35 of [108].  The 
challenge would be to make those extensions somehow commensurate with Eq. (55) and Eq. (56) 

  Having said, this, we will next go to the problem of Quantum Geometrodynamics. Before going to it, a 
notice as to the problems of bridging to general relativity using conventional Quantum mechanics, will 
be raised as a bridge to the use of  0ADMH    which makes a plausible bridge to the Fluid equation of 

general relativity, [109] but also a summary as to how and why the connection to the rest of general 
relativity is extremely difficult, i.e. the Friedman equation as seen in [109] has a classical analogue which 
cannot be linked to its general relativistic form,  but the fluid equation of General relativity in [109] does 
have a Newtonian derivation yielding the exact same result in both Newtonian and GR physics. Hence, 
the quantum-classical bridge as exemplified by Eq. (58) works for the fluid equation, but would not work 
for the GR Friedman equation, since the Friedman equation classical would be the only bridge to the 
quantum result, using the Eq. (58) bridge. And of course, both  the GR Friedman bridge plus the fluid 
cosmology bridge are both needed in the acceleration equation, i.e. from [109] the following cannot be 
linked to quantum mechanics, via Eq. (58), namely the acceleration equation of GR has 
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This requires two equations, namely,  
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The derivation of the acceleration equation for GR, using the two equations cited is in [109), page 60 

In addition we will derive the Fluid equation also used, which is the same form used in Eq. (58) making a 
linkage to relativity and quantum mechanics, possible, if one uses the following steps, as given on page 
59 of [109] I.e. If exists a  commoving radius Sr  

We then will get a clean derivation of the so called fluid equation, used in Cosmology. This fluid 
equation, which has the same form used in both GR and Newtonian physics may be in principle linkable 
to the quantization program outlined in Eq. (58). So with that, we go to the interactions given in Eq. (61) 
below. 
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The GR and classical physics forms of the fluid equation, so derived, in Eq. (61) and the results at the 
bottom of Eq. (60) would allow us to make connection, with a lot of work to the sort of reasoning used 
in Eq. (58) above, but due to the difference in the Friedman equation, in classical and GR form, as noted 
in Eq. (59), it would be using the Solvay methods , extremely difficult to make connection between an 
acceleration equation, using scale factors,  as given in Eq. (59) and Eq. (60) with the Eq. (58) connection 
between classical  and quantum mechanics with respect to an acceleration of the universe acceptable in 
both GR and quantum form. 

We can state though that a bridge to the Fluid equation, as given in Eq. (61) and Eq. (58) would at least 
in principle very doable.  Having said that, let us now go to the ideas of Quantum Geometrodynamics, as 
far as their use and future prospects to the study of Solvay 1927 methods, and quantum gravity  issues.                         

XX.Quantum Geometrodynamics and Semi classical approximations, 
as reference [22] and evolutionary Equations, for quantum states, and 
its relationships to quantum issues arising in [3] 



Due to how huge this literature is, we will be by necessity restricting ourselves to pages 172 to 177 of 
[22] as that encompasses Hamiltonian style formalism and also has some connections to the Hamilton 
Jacobi equation. 

We will make this limitation so our methods are not too far removed from the Solvay conference, 1927, 
i.e. the Hamilton-Jacobi equation makes an appearance, as well as a full stationary Schrodinger 
equation. 

In this discussion, the wave functions are often quantized, or nearly so, albeit usually added gravitational 
background is semi classical. 

To begin our inquiry as to Geometrodynamics, which has some fidelity to the Solvay 1927 conference, 
we look at the following expansion of the Klein Gordon Equation, without an external potential. i.e. 
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first relativistic correction term     (62) 

As a Klein Gordon result, this leads directly to the idea of quantum mechanics, as embedded within a 
larger theory. 

I,e this methodology as brought up by Kieffer, in page 177 of [22] in its own way is fully in sync with 
some of the investigations of the embedding of quantum mechanics within a larger structure, as has 
been mentioned in a far more abstract manner by t’Hooft, in [25], although to make further 
connections, it would be advisable to have a potential term put in, as well as to have more said about 
relativistic corrections.  

As mentioned by [22] , Lammerzahl , C. in [110] has extended this sort of reasoning to quantum optics in 
a gravitational field. The virtue of this, is that one is NOT using the functional Schrodinger equation, as 
seen in page 149 of the Wheeler De Witt equations, given in [22]. i.e. the above derivation, within the 
context of the orders of c, given above, has explicit time dependence put in its evolution equations, and 



avoids some of the issues of the Wheeler De Witt program. I.e. read page 149 and beyond in [22] as to 
some of the perils and promises as to this approach. 

In addition the 0c  recovery of the Schrodinger equation, and the 2c recovery of a Schrodinger equation 
within the context of the Klein Gordon equation is fully in sync with some of the Solvay 1927 
deliberations. As given in [3]. And also  directly linkable to [25] 

We will say more about this in our conclusion of this paper. 

Note that the entire ADM program, albeit fascinating is a bit outside the reference frame of Solvay, 
although we will fully comment upon it in our conclusion section of our document, as a jump off point 
from the Solvay 1927 conference. 

The main take away from this review, is how, especially Eq. (62) which is relevant to the issues of Solvay 
1927 , encapsulates decades later, the sheer dynamic interplay between classical and quantum worlds 
the Solvay Delegates were in 1927, and how the issues especially as given in [3] can give an excellent 
road map to debatable quantum gravity issues. 

 

XXI. A personal view of the relevance of the Solvay 1927 conference 
methodologies and the promise- perils of Quantum Gravity- 
Conclusion.  

What this author has seen has be a succession of themes which have resonated through the years as to 
Solvay after 1927 which need to be considered. 

A. First of all, the issue of if or not Quantum mechanics is embedded within a deterministic super 
structure, is very much with us, and that Solvay did not close this matter at all.  

T’ Hooft as of reference  [25] continues to elucidate, using different guises, the specifics as to would 
be embedding structures . In addition, the datum as to Eq. (62) , as to if there is as an example a 
comparison of terms, in that case, powers of c, in an expansion of the Klein Gordon Equation, needs 
to be revamped. i.e. the action principle, as brought up is crude, and the connections to the 
Hamilton Jacobi equation work here, primarily because the overall equation, Klein Gordon, is 
written sans a potential field included. 

One must keep in mind that any constituent classical field equation could do, and work in this 
situation provided that the action principle is sufficiently well chosen. I.e. this approach is in its 
infancy, and that exploring the same procedure with even an equation which is classical which has a 
potential in it should be investigated. 

B. I predict that the Wheeler De Witt procedure as outlined by [22] is going to be very difficult to 
justify, later on once the big news hits, as I expect, as of a repeating universe structure. I.e. 
WdW theory, which has no explicit energy term put in, ie. It is a Hamiltonian system times the 
WdW wave function, as equal to zero.  And if there is a repeating multiverse structure, which 
feeds into a recycled beginning for each new universe, which has been hypothesized by this 



author [111]  , that instead of the WdW, one will have to reconsider a different genesis of fed in 
initial conditions than what was envisioned by WdW. I.e. as given in [112] a quantized version of 
electromagnetic field generation, tied into the cosmological constant, as given in [112] may be 
necessary. And of course a quantum version of the  

C. Replacing it, to a degree will be work as done by [26] as far as items like the Ragstall theory, and 
also the work by Corda and his Iranian counter parts which does away with neat conservation of 
energy theorems for the start of the expansion of our universe. 

If Energy is not conserved, explicitly, at the start of the expansion of the universe, then the 
Hamiltonian structure  no longer equals the total energy, and hence items like Torsion which 
play a role as far as initial conditions we may be able to ascertain if items like Torsion affect 
generation of relic Gravitational waves. This should be looked at carefully. 

D. We have mentioned, in Eq. (59), Eq. (60) and Eq. (61) a break point between the general 
relativistic Friedman equation and its Newtonian version of the Friedman equation as a reason 
why the initial acceleration of the Universe, will, at least be hard to justify in terms of purely 
quantum processes. i.e. different paradigms will have to be constructed than just the Friedman 
and also the fluid equation used to link acceleration of the universe.   The author is aware that 
dark energy is used as a start to reacceleration of the universe and has seen this in many journal 
articles. [114] . Usually the cosmological constant, as given in [114] is the enabler of re 
acceleration of the universe, and the way to hit this problem will be in either confirming, or 
denying the basis of the cosmological constant, and to do it in a way which does not contravene 
experimental evidence as collated in [114] 

E. In [115] as given Sakar, on pages 471 to 473 speak of the breaking of super symmetry as a 
precursor for  the creation of a cosmological constant 

Going to Eq. (17.16) of page 473 of [115] a typical Lagrangian for a Quinessence field can be built 
up, usually involving a single field   which may be , as the author expects, pseudo – Nambu – 
Goldstone bosons, [116]. Needless to say even with that being done, that the author would 
expect some connectivity, no matter what potential system is picked with the procedure given 
in Eq. (59), Eq. (60) and Eq. (61) but with a different updated version of the Friedman equation 
which would avoid the problem outlined where the Friedman equation is replaced with a 
different parameterization , and done in such a way that there is some fidelity with Eq, (58). This 
also should be checked against [116] 

 

We also will expect to use some commonality with the ideas given in  [ 112 ] namely on page 14 via 

Quote: [112[, page 14 
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However, we can only have a nonzero INITIAL volume, if the Weyl Tensor, as we define it is NOT equal to zero! 
 
Hence, taking the square of the magnetic field, we will have 



 
 

              
 

21/42

0

0 0

3 11 1
~ 1 1

8 2 8

~ ( ) ( )g

Energy Volume
G t t G V

N graviton number m graviton mass

    
    

                              
  

             (64) 

End of quote 
 
This idea uses the idea of a quantum bounce, and is in its own way of some similarity with Loop quantum gravity, as 
given in [117] or perhaps, more in common with [118] which has the following , i.e. an energy density , p 166 of 
[118] 
 
 

                                         2 2 21

2 Friedman FriedmanFriedman m                                               (65) 

Here the mass m, could be say tied into the assumed matter of the early universe, and scalar field as 
given in Eq. (65) subjected to Quantum mechanical constraints, as would be in [112], [113] and [117]. 
 
All these suppositions should be checked with their equivalents in [3].  
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Appendix A. as copied from [20] (This will be heavily amended later) 
The first serious attack by Einstein on the "orthodox" conception took place during the Fifth Solvay 
International Conference on  and Photons in 1927. Einstein pointed out how it was possible to take 
advantage of the (universally accepted) laws of conservation of energy and of impulse (momentum) 
in order to obtain information on the state of a particle in a process of interference which, according 
to the principle of indeterminacy or that of complementarity, should not be accessible. 



 

Figure A. A monochromatic beam (one for which all the particles have the same impulse) encounters a first 

screen, diffracts, and the diffracted wave encounters a second screen with two slits, resulting in the formation 

of an interference figure on the background F. As always, it is assumed that only one particle at a time is able 

to pass the entire mechanism. From the measure of the recoil of the screen S1, according to Einstein, one can 

deduce from which slit the particle has passed without destroying the wave aspects of the process. 

 

Figure B. Einstein's slit. 

In order to follow his argumentation and to evaluate Bohr's response, it is convenient to refer to the 
experimental apparatus illustrated in figure A. A beam of light perpendicular to the X axis propagates 
in the direction zand encounters a screen S1 with a narrow (relative to the wavelength of the ray) slit. 
After having passed through the slit, the wave function diffracts with an angular opening that causes 
it to encounter a second screen S2 with two slits. The successive propagation of the wave results in 
the formation of the interference figure on the final screen F. 

At the passage through the two slits of the second screen S2, the wave aspects of the process 
become essential. In fact, it is precisely the interference between the two terms of the quantum 



superpositioncorresponding to states in which the particle is localized in one of the two slits which 
implies that the particle is "guided" preferably into the zones of constructive interference and cannot 
end up in a point in the zones of destructive interference (in which the wave function is nullified). It is 
also important to note that any experiment designed to evidence the "corpuscular" aspects of the 
process at the passage of the screen S2 (which, in this case, reduces to the determination of which 
slit the particle has passed through) inevitably destroys the wave aspects, implies the disappearance 
of the interference figure and the emergence of two concentrated spots of diffraction which confirm 
our knowledge of the trajectory followed by the particle. 

At this point Einstein brings into play the first screen as well and argues as follows: since the incident 
particles have velocities (practically) perpendicular to the screen S1, and since it is only the 
interaction with this screen that can cause a deflection from the original direction of propagation, by 
the law of conservation of impulse which implies that the sum of the impulses of two systems which 
interact is conserved, if the incident particle is deviated toward the top, the screen will recoil toward 
the bottom and vice versa. In realistic conditions the mass of the screen is so large that it will remain 
stationary, but, in principle, it is possible to measure even an infinitesimal recoil. If we imagine taking 
the measurement of the impulse of the screen in the direction X after every single particle has 
passed, we can know, from the fact that the screen will be found recoiled toward the top (bottom), 
whether the particle in question has been deviated toward the bottom or top, and therefore through 
which slit in S2 the particle has passed. But since the determination of the direction of the recoil of 
the screen after the particle has passed cannot influence the successive development of the 
process, we will still have an interference figure on the screen F. The interference takes place 
precisely because the state of the system is the superposition of two states whose wave functions 
are non-zero only near one of the two slits. On the other hand, if every particle passes through only 
the slit b or the slit c, then the set of systems is the statistical mixture of the two states, which means 
that interference is not possible. If Einstein is correct, then there is a violation of the principle of 
indeterminacy. 

 

End of the Wiki quote:  

 

APPENDIX B, e mail from Dr. Robert Baker, August 24, 2017 
 

Speed of Time Based on Muon Lifetime Decay Analyses by Robert M L Baker, Jr., August 24, 2017 

B1. Introduction 

A Muon is an elementary particle similar to the electron, with a negative electric charge, a spin 
of ½, but with a much greater mass than an electron. Muons decay, with several different decay modes, 
over a well measured time and almost always produce at least three particles, which include 
an electron  and two neutrinos. Because their lifetime or decay time has been very accurately measured 
over many years, they represent a possible means, as a transient time, to establish the speed of time. Of 
course time, like east-west, north-south and up-down, is a direction and directions do not have “speed” 
so we are discussing speed of time as a rate of progression of time along the dimension of time.  We 
propose that the speed of time might change over the years, decelerating from a high speed in the early 
universe, as discussed in Chapter 8. There is ongoing debate over the meaning of time and the 
constancy of the speed of light and other physical constants and the foregoing analyses and notions are 
open to considerable debate as in references [B1], [B2] and [B3]. As part of that debate, the utilization 
of the Muon decay time as a transient for establishing the change in the speed of time is discussed 



herein. As Beckwith states [B4] “… the issue Dr. Baker has raised is suggestive and should be thoroughly 
analyzed. The author finds that aside from inevitable scaling arguments, that the Muons are still a sub 
system, within a larger general system. I.e. the adage of Schrodinger who postulated that quantum sub 
systems, of a macrosystem definitely exhibit quantum mechanical time dependent behavior. Equation 
(51) is not quantum mechanical, but it is a sub system, and so the same rule by Schrodinger, as to sub 
systems exhibiting definite time dependence, may be applicable here. I.e. think in terms of time 
variance. “ 

B2. Analyses of Muon Decay Time 

 The following analysis are based upon the MuLan Collaboration. Specifically, FIG. 2 of Webber 
[B5] shown below, is a Muon-Lifetime measurement summary. The MuLan R06 and R07 results are 
plotted separately and illustrate the variation. The vertical shaded band is centered on the MuLan 
weighted average with a width equal to the combined uncertainty. Even more recent studies by Olive, et 
al. [B6] are also considered. 

 

FIG. 2 from D. M. Webber, et al. (2011), the MuLan Collaboration [B5] 

The combined results (circa 2009-2010 or 2009.5) due to MuLan give Muon-Lifetime = 
2,196,980.3(+/-2.2) ps, more than 15 times as precise as any previous experiment. On the other hand, 
the two previous determinations given in [B6], by Chitwood (2007) of 2,197,013 (+/- 11) ps and Barczyk 
(2008) of 2,197,083(+/- 15) ps and depicted in in FIG. 2 of [B5], show a decay time shortening, with 
respect to the MuLan value, of -34.7 picoseconds and – 104.7 picoseconds for Chitwood (2007) and 
Barczyk (2008), respectively. The slowdown for Chitwood over 2009.5 – 2007 = 2.5 years is -13.88 
picoseconds per year and for Barczyk over 2009.5-2008 = 1.5 years is – 69.8 picoseconds per year. 
Consideration of FIG. 2 of [B5] supports the view that, over the period 2007 to 2009 the Muon lifetime 
change is on the order of -35 (+/- 25) ps per year (ps =10-12 s, a picosecond).  

If linear, then over 13.7 billion years (1.37 x 1010 years) since the “Big Bang”, clock speed would 
be reduced by about 0.48 seconds (almost astrodynamically imperceptible). It appears more likely, 
however, that the speed of time decrease since the early universe would probably be exponential 



starting out very fast and then gradually slowing down in the years after the Big Bang. We might, 
therefore, now be measuring the tail of the speed of time slow down. Perhaps, Cepheid-variable star 
frequency would provide a possible determination of the overall speed of time variation. 

B3. Recent Measurement of Muon Decay Time and Conclusions 

Recent, 2017, data are provided in Adams [B7] who found the Muon decay time as: 2,047,270 
(+/- 43,021) ps. IOP Science 2017, J. Physics Conference Services 866012011. 

Even more recently, as discussed in Physics OpenLab, August, 2017 “Cosmic Ray Muons and Muon 
Lifetime”, they found the Muon decay time as: 2,078,000 (+/- 11,000) ps at about 2017.5.  

Since it has the lowest error and is the most recent, we will choose the Physics OpenLab result. 
Therefore, the difference in the Muon (decay) lifetime between MuLan of 2,196,980.3 (+/-2.2) ps at 
2009.5 and 2,078,000 (+/- 11,000) ps at 2017.5 is 2,078,000 - 2,196,980.3(+/-2.2) ps = -118,980.3 (+/- 
11,000) ps. According to these numbers, over the eight years since the MuLan measurements, the speed 
of time is slowing on the order of -14,900 (+/- 11,000) ps per year. This result is quite different from the -
35 (+/- 25) ps per year formerly calculated. Because it has relatively far less error associated with it, we 
will provisionally select the former, -35 (+/- 25) ps per year, slow down estimate. In any event, the 
trend, as apparently confirmed by the 2017 measurements, is for the Muon (decay) lifetimes to 
decrease significantly with time and the speed of time to slow after the Big Bang. Atomic clocks may be 
able to measure processes, both on Earth and in space, that can improve this estimate of the reduction 
of the speed of time. 

Of course, there may well have been overlooked systematic errors, which somehow could have 
been related to the particular “age” or sophistication of the measurement equipment utilized. Such 
systematic errors might reduce the Muon decay time measurements with time even though there was 
no real change in Muon decay time. On the other hand, such systematic errors would have needed to 
have been comprehensive of all the experimental equipment of all the Muon experimenters from 2007 
to 2017 and is unlikely. Other accurately measured quantities over the years could also be considered as 
transients such as the speed of light, a transient somewhat like the speed of a mile runner. In the case of 
light speed however, there would be an interesting relationship to the “constancy” of the speed of light 
during a possible inflation of the early Universe. Either clocks there might need to be very “fast” in order 
for the “material” of the early, possibly rapidly inflating Universe not to exceed the speed of light and/or 
the speed of light there might be considerably faster (continuing the runner analogy “older shorter 
length mile, apparently faster four-minute-mile runners during the early universe versus newer longer 
mile, apparently slower four-minute-mile runners” in modern times where runner’s intrinsic “speed” 
[like the “intrinsic” constant speed of light] remains unchanged, but the mile has lengthened). In this 
case, the apparent speed of light may be subject to a measurable decrease as time progresses after the 
Big Bang. That decrease as well as the constancy of other astrodynamic constants (Baker, et al. 1957 [8]) 
are subjects for continuing debate and future study. But hold on! If in the mile-runner analogy the 
“stopwatches” are running fast, then the shortening of the mile may be completely off-set by the speed 
of time increase and the apparent speed of the runner can be completely or partially offset and the 
intrinsic and apparent speeds could possibly be equal. Therefore, the intrinsic and apparent light-photon 
speeds could be the same in the early Universe. In any event, the early universe might be like a 
miniaturized World where “… the craftsman moves very fast indeed.” as in Chapter 8. The detection of 
high-frequency gravitational waves could reveal the truth. 
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