Landau and Lifshitz (1975), The Classical Theory of Fields, Fourth Revised English Edition,
Chapter 13, Annotated by R. M L Baker, Jr.

Pergamon Press Offices:

U. K. Pergamon Press Ltd., Headington Hill Hall, Oxford,
England

U.S. A. Pergamon Press Inc., Maxwell House, Fairview Park,
Elmsford, New York 10523, U.S.A.

CANADA Pergamon of Canada Ltd., 207 Queen’s Quay West,
Toronto 1, Canada

AUSTRALIA Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street,
Rushcutters Bay, N.S.W. 2011, Australia

FRANCE Pergamon Press SARL, 24 rue des Ecoles,

75240 Paris, Cedex 05, France

WEST GERM A NY Pergamon Press GmbH, 3300 Braunschweig, Postfach 2923,
Burgplatz 1, West Germany

Copyright © 1975 Pergamon Press Ltd.

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
Photocopying, recording or otherwise, without the prior
permission of Pergamon Press Lid.

First English edition 1951
Second English edition 1962
Third E; S| gdition 1971

h edition 1975
Library of Congress Cataloging in Publication Data

Landau, Lev Davidovich, 1908-1968.

The classical theory of fields.

(Course of theoretical physics; v. 2) I Bt

Translated from the 6th rev. ed. of Teoriia polia.

Includes bibliographical references.

1. Electromagnetic fields. 2. Field theory
(Physics) I. Lifshits, Evgenii Mikhailovich, joint
author. II. Title.

QC665. E4L.3713 1975 530.1°4 75-4737
ISBN 0-08-018176-7

Translated from the 6th revised edition
of Teoriya Pola, Nauka, Moscow, 1973

Printed in Great Britain by Billing & Sons Litd. Guildford and London



CHAPTER 13

GRAVITATIONAL WAVES

§ 107. Weak gravitationai waves

Just as in electrodynamics, in the relativistic theory of gravitation the finite velocity of
propagation of interactions results in the possibility of the existence of free gravitational
fields that are not linked to bodies—gravitational waves.

We consider the weak gravitational field in vacuum. As in § 105, we introduce the tensor
h;., describing a weak perturbation of the galilean metric: G

Gix = 94"+ hue | (107.1)
Then, to terms of first order in the 4, the contravariant metric tensor is:
gik e gik<0’~lzik, (107.2)

and the determinant of the tensor g;;:
g =g%%+h), (107.3)

where h=h!; all operations of raising and lowering tensor indices are done with the unper-
turbed metric g‘®.

As already pointed out in § 105, the condition that the A, be small leaves the possibility
of arbitrary transformations of reference system of the form x'@ = x' +r§‘ with small &¢;
then

he = hjp——m——— (107.4)

Using this arbitrariness of gauge for the tensor #,, we impose on it the supplementary
condition

2%’( =0, yf= hf- 1o, (107.5)
after which the ‘Rriﬂcgi tfnsor takes the simple form (105.11):
il Ry = 400y, (107.6)
where [] denotes the d’é@_t_:_{rl{lgf_:rg_ian operator:
2

The conditions (107.5) still do not fix a unique choice of reference frame: if certain A,

345



346 GRAVITATIONAL WAVES § 107

satisfy these conditions, then so will the Aj; of (107.4), if only the ¢t are solutions of the
equations 3

EE = (107.7)

Equating (107.6) to zero, we thus find the equations for the gravitational field in vacuum

in the form
Ok =0. (107.8)

This is the ordinary wave equation. Thus gggiitational fields, like electromagnetic fields,

propagate in vacuum.with the velocity of light. e
Let us consider a plane gravitational wave. In such a wave the field changes only along

one direction in space; for this direction we choose the axis x* = x. Equation (107.8) then

changes to
i 1 @\
(6x2 = 6t2) hf =0, (107.9)
the solution of which is any function of t+x/c (§ 47).

Consider a wave propagating in the positive direction along the x axis. Then all the quan-
tities h are functions of t—x/c. The auxiliary condition (107.5) in this case gives
Yl —y) =0, where the dot denotes differentiation with respect to f. This equality can be
integrated by simply dropping the sign of differentiation—the integration constants can
be set equal to zero since we are here interested only (as in the case of electromagnetic
waves) in the varying part of the field. Thus, among the components Y& that are left, we
have the relations

pi=ys U=Vl yi=y% Yo =Vo (107.10)

As we pointed out, the conditions (107.5) still do not determine the system of reference
uniquely. We can still subject the coordinates to a transformation of the form
x'F = xi+Ei(t—x/c). These transformations can be employed to make the four quantities

0 W3 ¥s, Y243 vanish; from the equalities (107.10) it then follows that the components

Lyl gl g also vanish. As for the remaining quantities ¥3, y2—13, they cannot be
made to vanish by any choice of reference system since, as we see from (107.4), these com-
ponents do not change under a transformation &; = E(t—x/c). We note that ¥ = ¥! also
vanishes, and therefore ¥ = K.

Thus a plane gravitational wave is determined by two quantities, 4,3 and by = —has.
In other words, ijga} waves arj’f‘l:ggs}'er’s_‘e yggxg{wbosc pplarization is determined
bya symumetric tensor. of the second rank in the yz plane, the sum of whose diagonal terms,
fiyy + b33, 1S ZETO- s SR

For the two independent polarizations we may choose the cases in which one of the two
quantities 73 and 3(hy,—h33) differs from zero. These two polarizations are distinguished
from one another by a rotation through 7/4 i the yz plane. .
“Let us calculate the energy-momentum pseudotensor in a plane gravitational wave.
The components ¢k are second-order quantities; wewmglm,mm neglecting terms
of still higher order. Since, when /i = 0, the determinant g differs from g'®@ = —1 only by
terms of second order, we can, in the general formula (96.9), set g =gt = —h™* . For
a‘-:i.)\lziﬁE ‘WEVEE all the other nonzero terms in t** are contained in the term

s ———"

O $hingt

in curly brackets in (96.9) (as is easily shown by choosing one of the axes of a galilean
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system of reference along the direction of propagation of the wave). Thus,

4

s (4 =
e s (107.11)

The energy flux in the wave is given by the quantities —cgt®~ct®. In a plane wave,
g e —— 1 . . . T i
propagating along the x' axis, in which the nonzero quantities hy3 and hy, = —h,,
depend only on the difference ¢ — x/c, this flux is also along x' and is equal to

&3
ct®! = 167k [h33+4(hys—hs3)?]. (107.12)

As initial conditions for the arbitrary field of a gravitational wave we must assign four
arbitrary functions of the coordinates: because of the transversality of the field there are
just two independent components of 4, > in addition to which we must also assign their
first time derivatives. Although we have made this enumeration here by starting from the
properties of a weak gravitational field, it is clear that the result, the number 4, cannot be
related to this assumption and applies for any free gravitational field, i.e. for any field which

1s not associated with gravitating masses.
SR > g v .

]

PROBLEMS

Determine the curvature tensor in a weak plane gravitational wave.
Solution: Calculating R,,,,, from (105.8), we find the following nonzero components:

T e S PR Y oS e RN 2 o

—Ro202 = Rozoz = —Ryo12 = Rog12 = Ros:n = R3131 =0y
Rogoz = —Ryo31 = —Roz12 = Rogs; = H,
where we use the notation
0= —}hgs = }hao, #= —1}hos.

In terms of the three-dimensional tensors A,., and B_; in (92.15), we have:

T T e s ey

QF 100 00 O !
Aig=|0 —0o ul, B.s=4H0 u o
O=n o 0 o —u

By a suitable rotation of the x2, x® axes, we can make one of the quantities ¢ or x vanish (at a
given point of four-space); if we make o vanish in this way, we reduce the curvature tensor to the
degenerate Petrov type II (type N).

§ 108. Gravitational waves in curved space-time

Just as we have treated the propagation of gravitational waves “on the background”
of a flat space-time, we can consider weak perturbations relative to an arbitrary (non-
galilean) “unperturbed” metric g{’. Also anticipating other possible applications, we
shall write the necessary formulas in a more general form.

Again taking the g;; in the form (107.1), we find the first order correction to the Christoffel




348 GRAVITATIONAL WAVES § 108
symbols expressed in terms of the hy:
rf};” :_%{h;c;l+hi;k_hki;i)a (108-1)

which can be verified by direct calculation (here, as in the sequel, all tensor operations of
raising and lowering of indices, and covariant differentiation, are done with the nongalilean

metric g¢°). We find for the corrections to the curvature tensor:
R;:(I}HJ = Jf(h}ic;m:l + hjn;k;l S hkm;i;l 0 h.li:;l;rn—_ h.ll;k;m += hkl;i;m)' (108‘2)

The corrections to the Ricci tensor are then
Rik“ = RlLEF}) = ‘%(hé;k;l - h:c;i;l TR hik;!;l T h;i;k)' (1083)
The corrections to the mixed components of the Ricci tensor are obtained from the relations
R;C(O)_*_ R'ic(l) i (Rl(l())+ R},”)(g"“o’ﬂh”),
so that
) — g"“°’R§;”—h“R§{”. (108.4)

The exact metric in vacuum must satisfy the exact Einstein equations R;, = 0. Since the

unperturbed metric gf’ satisfies the equations R{’ = 0, we find for the perturbation,

e i RO

RS) =0, Le., -{ N T, \\ ;
hi;k;:'*‘hi;i;a—hik;l;i‘h;i;k =0 (108.5)

In the géneral case of arbitrary gravitational waves, simplification of this equation to a
form like (107.8) is not possible. This'can, however, be done in the important case of waves
of high frequency;: when the wavelength 4 and the oscillation period 1/c are small compared

to the(characteristic dis'ta_nc\e‘s:% And times L[c over which the “background field” changes. |
Each differentiation of a component A increases the order of the quantity by a factor LiA

relative to derivatives of the unperturbed metric g\, If we limit the accuracy to terms of the
two_highest- orders [(L/A)* and (L/A)] we can interchange the orders of differentiation;
in fact, the difference W ]
Fops e g
hg;k;l = hi:i;k ~ hiﬂR:"((IU) ey hTRL(xEI)
is of order (L/A)®, whereas each of the expressions A;., and H..,., contains terms of both
higher orders. Imposing on A the supplementary conditions

2 =0 (108.6)
[analogous to (107.5)], we get the equation
bt =0 (108.7)

which generalizes (107.8).

For the reasons given in § 107, the condition (108.6) does not fix a unique choice of coordi-
nates. They can still be subjected to a transformation x'* = x*+&', where the small quanti-
ties &' satisfy the equation ik, = 0. These transformations can be used, in particular,
to impose on the /i, the condition h=hi = 0. Then % = A, so that the h¥ are subjected
to conditions

hi =00 hi = 0. (108.8)

After this the set of admissible transformations is reduced to the requirement &, =0

PRIE S |
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The pseudotensor /* contains, in addition to the unperturbed part ), terms of various
orders in the 4;,. We arrive at an expression analogous t (107.11) if we consider the quanti-
ties +™ averaged over regions of four-space with c‘l.irpensfongTa—r'g'e compared to A but small
compared to L. Such an averaging (which we denote by the angular brackets < . . . ) does
not affect the ¢!’ and annihilates all quantities that are linear in the rapidly oscillating
quantities #;,. Of the quadratic terms, we preserve only the terms of higher (second) order
in_L/Z; these are the terms quadratic in the derivatives Ay = 0h,/ox'.

To this accuracy, all terms in +* that are expressed as four-divergences can be dropped.
In fact, the integrals of such quantities over a region of four-space (the region of averaging)
are transformed by Gauss’ theorem, as a result of which their order of magnitude in 1/
is reduced by unity. In addition, those terms drop out which vanish because of (108.7)
and (108.8) after integration by parts. Thus, integrating by parts and dropping integrals
of four-divergences, we find:

<hl"_phllfn> = _<hl"hlp_p,n> =0,
Ch" JBE"y = —ChUHER = 0,
As a result the only second-order terms that remain are

c4

IC2)N nipq,k
Gy = o (iR (108.9)
We note that to this same accuracy, (#®»° = 0.

Since it has a definite energy, the gravitational wave is itself the source of some additional
gravitational field. Like the energy producing it, this field is a second-order effect in the 4.
But in the case of high-frequency gravitational waves the effect js s nificantl ngthened :
the fact that the pseudotensor r* is quadratic in the derivatives of the h;, introduces
the large factor 4™ 2. In such a case we may say that the wave itself produces the background
field on which it propagates. This field is conveniently treated by carrying out the averaging
described above over regions of four-space with dimensions large compared to A. Such
an averaging smooths out the short-wave “ripple” and leaves the slowly varying back-
gfound metric (R. A. Isaacson, 1968). i

To derive the equation determining this metric, we must, in expanding the R;;, keep
not only linear terms but also quadratic terms in ;: R, = R+ R+ RP. As already
pointed out, the averaging does not affect the zero-order terms. Thus, the averaged field
equations (R, > = 0 take the form

R = —(RP, (108.10)

where we should keep only terms of second-order in 1/1 in R{Z). They are easily found from
the identity (96.7). The terms quadratic in A, that arise on the right side of this identity,
and have the form of a four-divergence, vanish (to the accuracy considered) when the

averaging is done, and there remains

’ , 8nk | .
CR*=1g*R)P) = —— (1™,
¢
or, since {t*?% = 0, to this same accuracy:

8nk
RPY = == D>,
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Finally, using (108.9), we get eq. (108.10) in the final form
R = X{hE b ). (108.11)

g,

If the “background” is produced entirely by the waves themselves, (108.11) and (108.7)
must be solved simultaneously. An estimate of the expressions on both sides of (108.1 1)
shows that in this case the radius of curvature of the background metric, which is of order
L, is related to the wavelength 4 and the order of magnitude of its field /4 by L 2~h%)12,
i.e. A/IL~h.

§ 109. Strong gravitational waves

In this section we shall consider the solution of the Einstein equations which is a general-
ization of the weak, plane gravitational wave in a flat space-time (I. Robinson and H. Bondi,
1957).

We shall look for a solution in which, in a suitable reference frame, all the components
of the metric tensor are functions of a single variable, which we call x° (without, however,
prejudging its character). This condition still permits coordinate transformations, of the
form

2= x*+ ¢*(x?), (109.1)
S (109.2)

where ¢°, ¢* are arbitrary functions.

The character of the solution depends essentially on whether we can make all the go,
vanish by using the three transformations (109.1). This can be done if the determinant
|95l #0. In fact, under the transformation (109.1), g(,,—*gm,-i-g,p(ﬁ” (where the dot denotes
differentiation with respect to x°); if |g.pl #0, the system of equations

Joutgapd’ =0

determines the ¢#(x°) that accomplish the required transformation. Such a case will be
treated in § 117; here we shall be interested in the solution in which

9.0l = 0. (109.3)

In this case there is no reference system in which all the go, = 0. Instead, however, the
four transformations (109.1-2) can be used to make

go1 = 1, goo = 902 = 903 = 0. (109.4)

Here the variable x° has “lightlike” character: for dx* = 0, dx®+#0, the interval ds = 0;
we shall denote the variable x° chosen in this way by x° = n. Under the conditions (109.4)
the line element can be written in the form

ds? = 2dx" dn+ g,(dx"+g°dx')(dx"+g°dx"). (109.5)

Throughout this section, the indices a, b, ¢, . . . take on values 2, 3; g(n) can be regarded
as a two-dimensional tensor. Calculation of the quantities R,, leads to the following field
equations:

IR = —%gacfjcgbdfid = 0.
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It then follows that g,. g“= 0, or q = 0,1i.e.g° = const. We can, therefore, by a transforma-
tion x“+g“°x'>x“ bring the metric to the form

ds* = 2dx' dn+ g4(n)dx°dx". (109.6)

The determinant —g of this metric tensor coincides with the determinant |g,|, while
the only nonzero Christoffel symbols are the following:

7 |
oo = 465, Ty = —3ic,,

where we have introduced the two-dimensional tensor k,, = g, k2 = g*,. Of all the
components of the Ricci tensor, the only one that does not vanish identically is Ry, SO that
we have the equation

Roo = —1ki—1rlid = 0. (109.7)

Thus, the three functions g,,(n), g23(1), g33(1) must satisfy just one equation. Therefore
two of them can be chosen arbitrarily. It is convenient to write (109.7) in another form
writing the g, in the form

O = — X Vs Wil =1 (109.8)

Then the determinant —g = |g,,| = x*, and substitution in (109.7) gives, after simple
transformations, )

Il

X+ 3Pacy* N Poar™)x
(y™ is the two-dimensional tensor reciprocal to y,,). If we assign arbitrary functions 7,,()
(related to one another through the relation |y, 1) these equations determine the
function y(n).
We thus arrive at a solution containing two arbitrary functions. It is easy to see that it is
a generalization of the case considered in § 107 of a weak plane gravitational wave pro-
pagating in one direction.T The latter is obtained if we make the transformation

0 (109.9)

s t—x

G2 2
and set y,, = 0,,+/h,(n) (where the h,, are small quantities, subject to the condition
hy,+hs33 = 0) and y = 1; a constant value of y satisfies (109.9) if we neglect small second-
order terms.

Suppose that a weak gravitational wave of finite extent (a ‘“‘wave packet”) is passing
some point x. At the beginning of the passage we have 4,, = 0, y = 1; at the end of the
passage we again have h,, = 0, d%x/dt*> = 0, but the inclusion of second order terms in
(109.9) leads to the appearance of a nonzero negative value of dy/dt:

E C/0h,\?
dyftrs =t —2) dr<0
X/ sf( az) =

(the integral is taken over the time of passage of the wave). Thus, after the wave has passed,
x = l—const-¢, and after a finite time interval, y changes its sign. But vanishing of y means
vanishing of the metric determinant g, i.e. a singularity in the metric. This singularity,
however, is not physical in character; it is related only to the unsatisfactory nature of the

T A solution of similar character in a large number of variables is given in I. Robinson and A. Trautman,
Phys. Rev. Lett. 4, 431 (1960); Proc. Roy. Soc. A 265, 463 (1962).
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reference frame, “spoiled” by the passing gravitational wave, and can be eliminated by a
suitable transformation: after passage of the gravitational wave, the space-time does
actually become flat again.
This can be shown directly. If we measure the variable n from its value corresponding to
the singular point, y = #, so that
ds? = 2dy dx' —n*[(dx*)*+(dx?)*].
After the transformation

1 e 2
He =, =z, x' =&6—"———,

we get
ds? = 2dn d¢ —dy* —dz?,
and the substitution n = (1+Xx)/ D, E = G—%) N2 finally brings the metric to galilean
form.
This property of the gravitational wave—the creation of a fictitious singularity, is, of

course, not related to the fact that the wave is weak; it also applies to the general solution
of (109.7); just as in the example considered, near the singularity y~n, i.e. — g~ntt

PROBLEM
Find the condition for a metric of the form
ds? = dt* —dx? —dy*—dz* +f(t—x, y, 2)(dt —dx)*?

to be an exact solution of the Einstein equations for a field in vacuum (A. Peres, 1960).
Solution: The Ricci tensor is calculated most simply in the coordinates # = (t—x)/+/2, v =
= (t+x)/v/2, y, z, in which

ds? = —dy*—dz? +2dudv +2f(u, y, 2)du*.

Aside from g,, = gss = —1, the only nonzero components of the metric tensor are g,, = 2f,
g., = 1; then g"* = —2f, g* =1, while the determinant g = —1. A direct calculation with
(92.1) gives for the nonzero components of the curvature tensor:
ar e - L0
yuyu ayz’ zuzu azz’ yuzu ayaz‘

The only nonzero component of the Ricci tensor is R, = Af, where A is the Laplacian in the
coordinates y, z. Thus the Einstein equation is Af = 0, i.e. the function f(t—x, y, z) must be harmo-
nic in the variables y, z.

If f is independent of y and z, or linear in them, there is no field—the space time is flat (the
curvature tensor vanishes). The function f(u, y, z) = yzfi(w) + ¥(y*—2z?)f2(w), which is quadratic
in y and z, corresponds to a plane wave propagating in the positive x direction; the curvature
tensor in such a field depends only on #-x:

R =—fo R .= R, = - @

Corresponding to the two possible polarizations of the wave, the metric contains two arbitrary
functions f;(x) and f>(u).

+ This can be shown using (109.7) in precisely the same way as in § 97 for the analogous three-dimensional
equation in the synchronous reference frame. Just as there, the appearance of a fictitious singularity is
related to the crossing of coordinate curves.
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o s | VL]
§ 110. Radiation of gravitational waves L~ ;
Lqﬂt us consider next a weak k gravitational field, produced by arbitrary bodies, moving with
velocztxes small compared w1th the velomty of nght
ecause of the presence of matter, the equations of the gravitational field will differ from
the simple wave equation of the form [JAf = 0 (107.8) by having, on the right side of the
equality, terms coming from the energy-momentum tensor of the matter. We write these
equations in the form

Ovi = — (110.1)
where we have introduced in place of the h% the more convenient quantities
Vi = Hi—13%h,

and where 7} denotes the auxiliary quantities which are obtained upon going over from the
exact equations of gravitation to the case of a weak field in the approximation we are con-
sidering. It is easy to verify that the components tJ and 72 are obtained directly from the
corresponding components T% by taking out from them the terms of the order of magnitude
in which we are interested ; as for the components 74, they contain along with terms obtained
from the T, also terms of second order from Rf—15%R. T

The quantities Y% satisfy the condition (107.5) 8y*/ox* = 0. From (110.1) it follows that
this same equation holds for the 7¥:

D

i

ox*
This equation here replaces the general relation T%, = 0.

Using the equations which we have obtained, let us consider the problem of the energy
radiated by moving bodies in the form of gravitational waves. The solution of this problem

=0. 110.2)

requires the determination of the gravitational field in the “wave zone”, i.e. at distances

I

large compared with the wavelength of the radiated w waves.

““"In principle, , all the calculations are completely analogous to those which we carried out
for electromagnetic waves. Equation (110.1) for a weak gravitational field coincides in
form with the equation of the retarded potentials (§ 62). Therefore we can immediately
write its general solution in the form

4l
= Tf(,r;)t_g ‘%V, (110.3)

Since the velocities of all the bodies in the system are small we can write, for the field
at large distances from the system (see §§ 66 and 67), :

Y= — Di-RedV, (110.4)

t From egs. (110.1) we can again obtain the formulas (106.1-2) that were used in § 106 for the weak
constant field far from bodies. In the first approx1mation we neglect terms with second time derivatives
(containing 1/c?), and of all the components of r only 73 = pc? remains. The solution of the equations
AY? =0, Ay = 0, AYS = 167k p/c? that vanishes at 1nﬁmty isy? =0,¢5 =0,y = 4¢Ic,fwhere $ is the
Newtonian gravnauonal potential; cf. (99.2). One then finds for the tensor h" =4, —bﬁé the values

(Tes.1-2). S

!,A)’A; ‘ \ \f ",\,. J ne rdL L/ 4 e o

A N TR Sz e



354 GRAVITATIONAL WAVES ; § 110

where R, is the distance from the origin, chosen anywhere in the interior of the system.
From now on we shall, for brevity, omit the index #—(R,/c) in the integrand.
For the evaluation of these integrals we use equation (110.2). Dropping the index on the
7% and separating space and time components, we write (110.2) in the form -
0Ty @1:59 = 0t9;,  OToo

o el B g o

Multiplying the first equation by x”, we integrate over all space,

d ar Ty x?)
=RILE B e | a1 o A iz
axofz,ox dV—fax? x’dV—f = ar fz,,,,dv.
Since at infinity 7,, = 0, the first integral on the right, after transformation by Gauss’
theorem, vanishes. Taking half the sum of the remaining equation and the same equation
with transposed indices, we find

i
J‘faﬂ av = — "2" a—xé f (Tuoxﬂ'i'fﬂoxu) dV.

Next, we multiply the second equation of (110.5) by x*x’, and again integrate over all
space. An analogous transformation leads to

]
P f TooXxP dV = — f (Ta0x? +1g0x%) dV.

Comparing the two results, we find
2

10 .
J‘Taﬁdeﬁé;gJ.‘Coox xadV. (“06)

Thus the integrals of all the t,; appear as expressions in terms of integrals containing only
the component 7. But this component, as was shown earlier, is simply equal to the corres-
ponding component To, of the energy-momentum tensor and can be written to sufficient
accuracy [see (99.1)] as:

Too = HC°. (110.7)

et e

Substituting this in (110.6) and introducing the time ¢ = x°/c, we find for (110.4)

D G
Vi = = ¢*R, ot

At large distances from the bodies, we can consider the waves as plane (over not too large
T ———— et e —— s B N s Sy AR _ — o
regions of ¢ s__p_acei. Therefore we can calculate the flux of energy radiated by the system, say

along the direction of the x* axis, by using formula (107.12). In this formula there enter the
components /i3 = ;3 and hyp—hs3 = Yy, —;33. From (110.8), we find for them the
expressions’

f px*x? dv. (110.8)

Dl 2k 2 =
hyy = — ﬁ D3, hyp—h3z=— 3R, (D33—D33) (110.9)

+ The tensor (110.8) does not satisfy the conditions under which formula (107.12) was derived. However,
the transformation of reference frame that brings the 4, to the required gauge does not affect the values
of the components of (110.9) that are used here.
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(the dot denotes time differentiation), where we have introduced the mass quadrupole
tensor (99.8):

D,y = [ p(3x*x? —3,,r?) dV. (110.10)
As a result, we obtain the energy flux along the x! axis in the form
t10_ ' [(EZZ—D33 2+ ) ]
S 36nc R3 B ) o
The flux of energy into an element of solid angle in the given direction is then obtained
by multiplying by R2 do.

The two terms in this expression correspond to the radiation of waves of two independent
polarizations. To write them in invariant form (independent of the choice of the direction
of radiation) we introduce the three-dimensional unit polarization tensor e,,; of the plane
gravitational wave, which determines the nonzero components of 4,, (in the gauge for the
h;. in which hy, = hyo = h = 0). The polarization tensor is symmetric and satisfies the
conditions

(110.11)

€ =0, eun; =0, ege, =1, (110.12)
where n is a unit vector in the direction of propagation of the wave.
Using this tensor we can write the intensity of radiation of a given polarization into
solid angle do in the form R
= T2nc
This expression depends implicitly on the direction of n through the transversality con-
dition e,gn; = 0. The total angular distribution for all polarizations is gotten by summing
(110.13) over polarizations, or, what is equivalent, averaging over polarization and multiply-
ing by 2 (the number of independent polarizations). The averaging is done using the formula

di (D,g5)* do. (110.13)

€8s = H{nangnns+(nngd,s+n,n;0,p)—
—(nan,0p5+ ngn,dys+ n,ns0p,+ngnsé,,)—
—04p0,5+(0,,055+ 05,045) (110.14)
(the expression on the right is a tensor formed from the unit tensor and the components of
the vector m; it has the required symmetry in its indices, it gives unity on contraction on
pairs of indices a, y and f8, d, and vanishes after scalar multiplication with m).
The result is
1 = e
= [3, (Dygngng)*+ : Di,,—ﬁ,ﬁﬁ,,n,,n,] do. (110.15)
The total radiation in all directions, i.e., the energy loss of the system per unit time
(—d&/dt), can be found by averaging dl/do over all directions and multiplying the result
by 4n. The averaging is easily performed using the formulas given in the footnote on p. 189,
and gives
¢ .k .
dp T ADeR
We note that the radiation of gravitational waves is a fifth order effect in 1/c. This fact,

together with the smallness of the gravitational constant k, makes the usual effects extremely
G ol S L
small.

(110.16)



o

1%

.
y 2X,

356 GRAVITATIONAL WAVES § 110
PROBLEMS

1. Two bodies, attracting each other according to Newton’s law, move in cir@ar orbits (around
their common center of inertia). Determine the average (over a rotation period) of the intensity
of radiation of gravitational waves and its distribution in polarization and direction.

Solution: Choosing the coordinate origin at the center of inertia, we have for the radius vectors
of the two bodies:

ms n,
rn = e — e —E B L=k
m,; +mz my +m;z

The components of the tensor D,, are (if the xy plane coincides with the plane of motion):
D, = pr’(cost y 31 O ur*(3sin? y—1),
D, = 3ur*cosysiny, D, = —ur?,

y is the polar angle of the vector r in the xy plane. For m moﬁo’

r = const, and ¥ "
v the polar angle 6 and azimuth ¢, with the polar axis z perpendi-

We assign the «
cular to the plane of thg_ motion. Let us consider the two polarizations for which: (1) ey = 1/V2;
@)es, — —Cos = il v/2. Projecting the tensor D,; on the directions of the spherical unit vectors
e, and e, calculating with formula (110.13) and averaging over the time, we find the result for
these two cases and for the sum I=5L+IL: B
dl,  kprotrt 3 dal, kuroSrt
Cai— 0 e R A P 2 9)2
. o o St COSE RS T i (1 +cos? 6)2,
=i 7
= ’ 26,4 Foowan 7}
f{l =’ﬁ” il (1 +6 cos? 6 +cos* 0), / :
do (o DR N g | >

32k*mimi(m, +my) I
- Scirs Pl

[t%r‘ealcglating the toti intensity I alone, we should, of course, have used (110.16)].
The loss of energy from the {adiating system leads to a gradual (secular) approach of the two

o
.7/

bodies. Since & = —kmma/2r, the velocity of approach is
el 0 S 64k muma(my +ma)
kmums dt Scr> :

2. Find the average (over a rotation period) of the energy radiated in the form of gravitational
waves by a system of two bodies moving in *‘iptical orbits (P. C. Peters and J. Mathews).T
Solution: In contrast to the case of circular motion, the distance r and the angular velocity vary

along the orbit according to the laws

R, ¢ a(l —e?) dy 1 .

‘ o 1+ecosy, =pis ;;[k(ml SEa)a(l=edla® o) U

E where e is the eccentricity and a is the semimajor axis of the orbit (cf. Mechanics, § 15). A quite
lengthy calculation using (110.16) gives:

dé  8k*mimi(m,+m2) 5
St —Ts—a—‘;&,’(—l_—ﬁr (1 +e cos y)* [12(1 +e cos y)* +e* sin® y].
In averaging over the period of rotation, the integration over ! is replaced by integration over v,
&K

+ For the angular, polarization, and spectral distributiof{s of this radiation, cf. Phys. Rev. 131, 435 (1963).
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and gives the result:

Jia {
oves M

¢ s l i 2 X 4
dt SYEi (1—e?)k T54% Tiggt

dé _ 32ktmimi(myiima) | ( 78
2 24 96 )

We note the rapid increase in intensity of radiation with increasing eccentricity of the orbit.
3. Determine the time-averaged rate of loss of angular momentum from a system of bodies in
stationary motion and emitting gravitational waves. e

Solution: For convenience of writing formulas, we temporarily regard the body as consisting
of discrete particles. We represent the average rate of loss of energy of the system as the work of
the “frictional forces” f acting on the particles:

DA f_ (1)
M ltx

(we omit the index labeling the particles). Then the average rate of loss of angular momentumkis

given by : e ———s

aVE o —
—dfz = 2(r xf), = Eeaﬂyxpj; (2)
(cf. the derivation of formula (75.7)). To determine f, we write
d& Tt T T v)"
—g; T 5;3 «Bap _45vc5 DaﬁDizﬂ

(where we have used the fact that the average values of total time derivatives vdnish). Substituting
D_, = Zm(3x,v,+3x,v,—2rv0,,) and comparing with (1), we find:

2k
f. = —qggs DiGmx,.

Substitution of this expression in (2) gives the result:
Bt Sl D 3)

= s “aBy T poT yé Se'xﬁvDﬂd &y
dt 45¢ A9CY el

4. For a system of two bodies moving in elliptical orbits, find the average loss of angular momen-
tum per unit time. =8

Solution: A calculation with formula (3) of the preceding problem, analogous to that done
in problem 2, gives the result:

b

_aM, _ R2kimimiVmiim, 1 (1 R 4
o 5coa? (1—e?)? 4 )

For circular motion (e = 0) the values of & and M are, as they should be, related by & = Mo. } T




